Detecting, locating, & quantifying false data injections utilizing grid topology through optimized D-FACTS device placement

Kaci L. Kuntz, Michael Smith, K. Wedeward, Michael Collins
{"title":"Detecting, locating, & quantifying false data injections utilizing grid topology through optimized D-FACTS device placement","authors":"Kaci L. Kuntz, Michael Smith, K. Wedeward, Michael Collins","doi":"10.1109/NAPS.2014.6965352","DOIUrl":null,"url":null,"abstract":"Power grids are monitored by gathering data through remote sensors and estimating the state of the grid. Bad data detection schemes detect and remove poor data. False data is a special type of data injection designed to evade typical bad data detection schemes and compromise state estimates, possibly leading to improper control of the grid. Topology perturbation is a situational awareness method that implements the use of distributed flexible AC transmission system devices to alter impedance on optimally chosen lines, updating the grid topology and exposing the presence of false data. The success of the topology perturbation for improving grid control and exposing false data in AC state estimation is demonstrated. A technique is developed for identifying the false data injection attack vector and quantifying the compromised measurements. The proposed method provides successful false data detection and identification in IEEE 14, 24, and 39-bus test systems using AC state estimation.","PeriodicalId":421766,"journal":{"name":"2014 North American Power Symposium (NAPS)","volume":"343 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2014.6965352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Power grids are monitored by gathering data through remote sensors and estimating the state of the grid. Bad data detection schemes detect and remove poor data. False data is a special type of data injection designed to evade typical bad data detection schemes and compromise state estimates, possibly leading to improper control of the grid. Topology perturbation is a situational awareness method that implements the use of distributed flexible AC transmission system devices to alter impedance on optimally chosen lines, updating the grid topology and exposing the presence of false data. The success of the topology perturbation for improving grid control and exposing false data in AC state estimation is demonstrated. A technique is developed for identifying the false data injection attack vector and quantifying the compromised measurements. The proposed method provides successful false data detection and identification in IEEE 14, 24, and 39-bus test systems using AC state estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过优化的D-FACTS设备放置,利用网格拓扑检测、定位和量化虚假数据注入
电网的监测是通过远程传感器收集数据并估计电网的状态。不良数据检测方案检测和删除不良数据。假数据是一种特殊类型的数据注入,旨在逃避典型的坏数据检测方案和损害状态估计,可能导致对网格的不适当控制。拓扑扰动是一种态势感知方法,它实现了使用分布式柔性交流传输系统设备来改变最佳选择线路上的阻抗,更新电网拓扑并暴露错误数据的存在。证明了拓扑摄动在改进电网控制和暴露交流状态估计中的假数据方面的成功。提出了一种识别虚假数据注入攻击向量和量化泄露度量的技术。该方法利用交流状态估计在IEEE 14、24和39总线测试系统中提供了成功的假数据检测和识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Addressing cyber security for the oil, gas and energy sector Investigation of voltage stability in three-phase unbalanced distribution systems with DG using modal analysis technique Dynamic Remedial Action Scheme using online transient stability analysis Implementing a real-time cyber-physical system test bed in RTDS and OPNET Size reduction of permanent magnet generators for wind turbines with higher energy density permanent magnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1