US2RO: Union of Superpoints to Recognize Objects

Marcel Tiator, Anna Maria Kerkmann, C. Geiger, P. Grimm
{"title":"US2RO: Union of Superpoints to Recognize Objects","authors":"Marcel Tiator, Anna Maria Kerkmann, C. Geiger, P. Grimm","doi":"10.1142/s1793351x21400146","DOIUrl":null,"url":null,"abstract":"The creation of interactive virtual reality (VR) applications from 3D scanned content usually includes a lot of manual and repetitive work. Our research aim is to develop agents that recognize objects to enhance the creation of interactive VR applications. We trained partition agents in our superpoint growing environment that we extended with an expert function. This expert function solves the sparse reward signal problem of the previous approaches and enables to use a variant of imitation learning and deep reinforcement learning with dense feedback. Additionally, the function allows to calculate a performance metric for the degree of imitation for different partitions. Furthermore, we introduce an environment to optimize the superpoint generation. We trained our agents with 1182 scenes of the ScanNet data set. More specifically, we trained different neural network architectures with 1170 scenes and tested their performance with 12 scenes. Our intermediate results are promising such that our partition system might be able to assist the VR application development from 3D scanned content in near future.","PeriodicalId":217956,"journal":{"name":"Int. J. Semantic Comput.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Semantic Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793351x21400146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The creation of interactive virtual reality (VR) applications from 3D scanned content usually includes a lot of manual and repetitive work. Our research aim is to develop agents that recognize objects to enhance the creation of interactive VR applications. We trained partition agents in our superpoint growing environment that we extended with an expert function. This expert function solves the sparse reward signal problem of the previous approaches and enables to use a variant of imitation learning and deep reinforcement learning with dense feedback. Additionally, the function allows to calculate a performance metric for the degree of imitation for different partitions. Furthermore, we introduce an environment to optimize the superpoint generation. We trained our agents with 1182 scenes of the ScanNet data set. More specifically, we trained different neural network architectures with 1170 scenes and tested their performance with 12 scenes. Our intermediate results are promising such that our partition system might be able to assist the VR application development from 3D scanned content in near future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
US2RO: Superpoints Union to recognition Objects
从3D扫描内容创建交互式虚拟现实(VR)应用程序通常包括大量的手工和重复工作。我们的研究目标是开发识别物体的代理,以增强交互式VR应用程序的创建。我们在用专家函数扩展的superpoint生长环境中训练分区代理。该专家函数解决了先前方法的稀疏奖励信号问题,并能够使用具有密集反馈的模仿学习和深度强化学习的变体。此外,该函数允许计算不同分区的模仿程度的性能度量。此外,我们还引入了一个环境来优化叠加点的生成。我们使用ScanNet数据集的1182个场景来训练代理。更具体地说,我们用1170个场景训练了不同的神经网络架构,并用12个场景测试了它们的性能。我们的中间结果是有希望的,这样我们的分区系统可能能够在不久的将来从3D扫描内容中辅助VR应用程序的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editorial - Special Issue on IEEE AIKE 2022 TemporalDedup: Domain-Independent Deduplication of Redundant and Errant Temporal Data Knowledge Graph-Based Explainable Artificial Intelligence for Business Process Analysis Knowledge Graph-Based Integration of Autonomous Driving Datasets Confidence-Based Cheat Detection Through Constrained Order Inference of Temporal Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1