The RAMCloud Storage System

J. Ousterhout, A. Gopalan, A. Gupta, Kejriwal A., Collin Lee, Behnam Montazeri, Diego Ongaro, S. Park, Henry Qin, M. Rosenblum, Stephen M. Rumble, Ryan Stutsman, Stephen Yang
{"title":"The RAMCloud Storage System","authors":"J. Ousterhout, A. Gopalan, A. Gupta, Kejriwal A., Collin Lee, Behnam Montazeri, Diego Ongaro, S. Park, Henry Qin, M. Rosenblum, Stephen M. Rumble, Ryan Stutsman, Stephen Yang","doi":"10.1145/2806887","DOIUrl":null,"url":null,"abstract":"RAMCloud is a storage system that provides low-latency access to large-scale datasets. To achieve low latency, RAMCloud stores all data in DRAM at all times. To support large capacities (1PB or more), it aggregates the memories of thousands of servers into a single coherent key-value store. RAMCloud ensures the durability of DRAM-based data by keeping backup copies on secondary storage. It uses a uniform log-structured mechanism to manage both DRAM and secondary storage, which results in high performance and efficient memory usage. RAMCloud uses a polling-based approach to communication, bypassing the kernel to communicate directly with NICs; with this approach, client applications can read small objects from any RAMCloud storage server in less than 5μs, durable writes of small objects take about 13.5μs. RAMCloud does not keep multiple copies of data online; instead, it provides high availability by recovering from crashes very quickly (1 to 2 seconds). RAMCloud’s crash recovery mechanism harnesses the resources of the entire cluster working concurrently so that recovery performance scales with cluster size.","PeriodicalId":318554,"journal":{"name":"ACM Transactions on Computer Systems (TOCS)","volume":"131 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"280","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2806887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 280

Abstract

RAMCloud is a storage system that provides low-latency access to large-scale datasets. To achieve low latency, RAMCloud stores all data in DRAM at all times. To support large capacities (1PB or more), it aggregates the memories of thousands of servers into a single coherent key-value store. RAMCloud ensures the durability of DRAM-based data by keeping backup copies on secondary storage. It uses a uniform log-structured mechanism to manage both DRAM and secondary storage, which results in high performance and efficient memory usage. RAMCloud uses a polling-based approach to communication, bypassing the kernel to communicate directly with NICs; with this approach, client applications can read small objects from any RAMCloud storage server in less than 5μs, durable writes of small objects take about 13.5μs. RAMCloud does not keep multiple copies of data online; instead, it provides high availability by recovering from crashes very quickly (1 to 2 seconds). RAMCloud’s crash recovery mechanism harnesses the resources of the entire cluster working concurrently so that recovery performance scales with cluster size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RAMCloud存储系统
RAMCloud是一个存储系统,提供对大规模数据集的低延迟访问。为了实现低延迟,RAMCloud在任何时候都将所有数据存储在DRAM中。为了支持大容量(1PB或更多),它将数千台服务器的内存聚合到一个一致的键值存储中。RAMCloud通过在二级存储上保留备份副本来确保基于ram的数据的持久性。它使用统一的日志结构机制来管理DRAM和辅助存储,从而实现高性能和高效的内存使用。RAMCloud使用基于轮询的方法进行通信,绕过内核直接与网卡通信;使用这种方法,客户机应用程序可以在不到5μs的时间内从任何RAMCloud存储服务器读取小对象,持久地写入小对象大约需要13.5μs。RAMCloud不会在线保存多个数据副本;相反,它通过从崩溃中快速恢复(1到2秒)来提供高可用性。RAMCloud的崩溃恢复机制利用整个集群并发工作的资源,以便恢复性能随集群大小而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting Inter-process Communication with Architectural Support H-Container: Enabling Heterogeneous-ISA Container Migration in Edge Computing ROME: All Overlays Lead to Aggregation, but Some Are Faster than Others The Role of Compute in Autonomous Micro Aerial Vehicles: Optimizing for Mission Time and Energy Efficiency An OpenMP Runtime for Transparent Work Sharing across Cache-Incoherent Heterogeneous Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1