A Dimension-Independent and Extensible Framework for Huge Geometric Models

David Canino
{"title":"A Dimension-Independent and Extensible Framework for Huge Geometric Models","authors":"David Canino","doi":"10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2010/111-116","DOIUrl":null,"url":null,"abstract":"Nowadays, gigantic models can be easily produced in many applications and their dimension often exceeds the RAM size in a common workstation. Thus, using an external memory technique is mandatory in this case. In this paper, we define a dimension-independent and extensible framework, called Objects Management in Secondary Memory (OMSM), for managing huge models. The OMSM framework can be easily adapted to the users needs through dynamic plugins, providing many techniques to be integrated in a storing architecture.","PeriodicalId":405486,"journal":{"name":"European Interdisciplinary Cybersecurity Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Interdisciplinary Cybersecurity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2010/111-116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, gigantic models can be easily produced in many applications and their dimension often exceeds the RAM size in a common workstation. Thus, using an external memory technique is mandatory in this case. In this paper, we define a dimension-independent and extensible framework, called Objects Management in Secondary Memory (OMSM), for managing huge models. The OMSM framework can be easily adapted to the users needs through dynamic plugins, providing many techniques to be integrated in a storing architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型几何模型的维无关可扩展框架
如今,在许多应用程序中可以很容易地生成巨大的模型,其尺寸通常超过普通工作站的RAM大小。因此,在这种情况下,必须使用外部内存技术。在本文中,我们定义了一个维度无关的可扩展框架,称为次要内存中的对象管理(OMSM),用于管理大型模型。通过动态插件,OMSM框架可以很容易地适应用户的需求,提供了许多可以集成到存储体系结构中的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Enhanced Combinatorial Contextual Neural Bandit Approach for Client Selection in Federated Learning Emerging Technologies for Privacy Preservation in Energy Systems Understanding the Evolution of Transatlantic Data Privacy Regimes: Ideas, Interests, and Institutions A Federated Explainable AI Model for Breast Cancer Classification XAI-driven Adversarial Attacks on Network Intrusion Detectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1