Implementation of various approaches for iris image normalization

N. Joshi, R. Lamba, D. Shah, Bhargav V. Ghadia
{"title":"Implementation of various approaches for iris image normalization","authors":"N. Joshi, R. Lamba, D. Shah, Bhargav V. Ghadia","doi":"10.1109/NUICONE.2011.6153255","DOIUrl":null,"url":null,"abstract":"A biometric system provides automatic identification of an individual, based on a unique feature or characteristic possessed by the individual. Iris recognition is regarded as the most reliable and accurate biometric identification system available. Here, the segmented iris region is processed to allow comparisons with existing database (Normalization and Enhancement). The normalization process will produce iris regions, which have the same constant dimensions, so that two photographs of the same iris under different conditions will have characteristic features at the same spatial location. To convert iris into dimensionally compatible form, normalization technique was studied and various approaches of normalization are implemented. When needed, these approaches have been modified to achieve better performance. This electronic document represents implementation of various techniques for validation of this work.","PeriodicalId":206392,"journal":{"name":"2011 Nirma University International Conference on Engineering","volume":"34 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Nirma University International Conference on Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUICONE.2011.6153255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A biometric system provides automatic identification of an individual, based on a unique feature or characteristic possessed by the individual. Iris recognition is regarded as the most reliable and accurate biometric identification system available. Here, the segmented iris region is processed to allow comparisons with existing database (Normalization and Enhancement). The normalization process will produce iris regions, which have the same constant dimensions, so that two photographs of the same iris under different conditions will have characteristic features at the same spatial location. To convert iris into dimensionally compatible form, normalization technique was studied and various approaches of normalization are implemented. When needed, these approaches have been modified to achieve better performance. This electronic document represents implementation of various techniques for validation of this work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现虹膜图像归一化的各种方法
生物识别系统基于个体所具有的独特特征或特征提供对个体的自动识别。虹膜识别被认为是目前最可靠、最准确的生物特征识别系统。在这里,分割的虹膜区域进行处理,以便与现有数据库进行比较(归一化和增强)。归一化过程将产生具有相同恒定尺寸的虹膜区域,从而使同一虹膜在不同条件下的两张照片在同一空间位置具有特征特征。为了将虹膜转换成尺寸兼容的形式,研究了归一化技术,实现了各种归一化方法。在需要时,可以对这些方法进行修改以获得更好的性能。这个电子文档代表了验证这项工作的各种技术的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal placement of power system stabilizers: Simulation studies on a test system Exploring a new direction in colour and texture based satellite image search and retrieval system Performance evaluation of IEEE 802.16e WiMax physical layer ANN controller for binary distillation column — A Marquardt-Levenberg approach ANN based sensorless rotor position estimation for the Switched Reluctance Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1