Evaluation of machine learning techniques to classify code comprehension based on developers' EEG data

L. Gonçales, Kleinner Farias, L. S. Kupssinskü, Matheus Segalotto
{"title":"Evaluation of machine learning techniques to classify code comprehension based on developers' EEG data","authors":"L. Gonçales, Kleinner Farias, L. S. Kupssinskü, Matheus Segalotto","doi":"10.1145/3424953.3426481","DOIUrl":null,"url":null,"abstract":"Psychophysiological data such as brain waves have been used with machine learning techniques to classify the level of expertise and difficulty of software developers. However, little is known about the effectiveness of machine learning techniques (MLT) for classifying developers' code comprehension based on their brainwave data. This study evaluates the effectiveness of MLT's trained with EEG data to classify developers' code comprehension. Brainwave data collected from an EEG device while developers performed source code comprehension tasks was used to train the Neural Network, Support Vector Machine, Naïve Bayes and Random Forrest classifiers. The effectiveness of these techniques was analyzed using accuracy, precision and recall. The Neural Network classifier, trained with EEG data and Principal Component Analysis, obtained 84% accuracy to classify code comprehension. Thus, the application of MLT to classify developers' code comprehension based on EEG data is possible.","PeriodicalId":102113,"journal":{"name":"Proceedings of the 19th Brazilian Symposium on Human Factors in Computing Systems","volume":"134 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Brazilian Symposium on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3424953.3426481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Psychophysiological data such as brain waves have been used with machine learning techniques to classify the level of expertise and difficulty of software developers. However, little is known about the effectiveness of machine learning techniques (MLT) for classifying developers' code comprehension based on their brainwave data. This study evaluates the effectiveness of MLT's trained with EEG data to classify developers' code comprehension. Brainwave data collected from an EEG device while developers performed source code comprehension tasks was used to train the Neural Network, Support Vector Machine, Naïve Bayes and Random Forrest classifiers. The effectiveness of these techniques was analyzed using accuracy, precision and recall. The Neural Network classifier, trained with EEG data and Principal Component Analysis, obtained 84% accuracy to classify code comprehension. Thus, the application of MLT to classify developers' code comprehension based on EEG data is possible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于开发者脑电图数据的代码理解分类机器学习技术评价
脑电波等心理生理学数据已与机器学习技术一起用于对软件开发人员的专业水平和难度进行分类。然而,人们对机器学习技术(MLT)基于开发人员的脑电波数据对他们的代码理解进行分类的有效性知之甚少。本研究评估了用脑电数据训练的MLT对开发人员代码理解程度进行分类的有效性。当开发人员执行源代码理解任务时,从EEG设备收集的脑波数据被用于训练神经网络、支持向量机、Naïve贝叶斯和随机福雷斯特分类器。从正确率、精密度和召回率三个方面分析了这些技术的有效性。神经网络分类器经脑电数据和主成分分析训练后,对代码理解的分类准确率达到84%。因此,应用MLT对开发人员基于脑电数据的代码理解进行分类是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UX trek: a post-interaction journey from immersive experience logs Possibilities for the digital literacy of the older people in times of social distancing App coronavírus-SUS: an evalution using the ergonomic criteria of usability Beauty tech nails: towards interaction and functionality ChartVision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1