Prediction of Electromechanical Oscillatory Parameters in Power Systems Using ANN

Nashida C, R. S, S. R.
{"title":"Prediction of Electromechanical Oscillatory Parameters in Power Systems Using ANN","authors":"Nashida C, R. S, S. R.","doi":"10.1109/ICEPE50861.2021.9404526","DOIUrl":null,"url":null,"abstract":"The increase in electric power demand pushes the modern power system for more interconnected networks. It leads to a lack of inertia and creates more critical disturbances in the power system. It may not be adequately damped out and results in cascade tripping. Immediate detection of low-frequency oscillatory modes and their parameters will help the power system operator to act on a particular event without consuming much time. This paper proposes a dynamic method for the oscillatory mode parameter estimation in a power system using an Artificial Neural Network (ANN). An ANN model is created to analyze the power oscillation disturbance within the system, and it is trained using the Hilbert transform method to estimate the instantaneous parameters. Once the ANN model is trained for different power disturbance situations, it can be used for any events associated with the system. Simulation results are verified using two area Kundur system at different disturbance conditions.","PeriodicalId":250203,"journal":{"name":"2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPE50861.2021.9404526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in electric power demand pushes the modern power system for more interconnected networks. It leads to a lack of inertia and creates more critical disturbances in the power system. It may not be adequately damped out and results in cascade tripping. Immediate detection of low-frequency oscillatory modes and their parameters will help the power system operator to act on a particular event without consuming much time. This paper proposes a dynamic method for the oscillatory mode parameter estimation in a power system using an Artificial Neural Network (ANN). An ANN model is created to analyze the power oscillation disturbance within the system, and it is trained using the Hilbert transform method to estimate the instantaneous parameters. Once the ANN model is trained for different power disturbance situations, it can be used for any events associated with the system. Simulation results are verified using two area Kundur system at different disturbance conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的电力系统机电振荡参数预测
电力需求的增长促使现代电力系统向更加互联的网络发展。它会导致惯性的缺乏,并在电力系统中产生更严重的干扰。它可能没有得到充分的阻尼,导致级联跳闸。低频振荡模式及其参数的即时检测将有助于电力系统操作员在不耗费太多时间的情况下对特定事件采取行动。提出了一种基于人工神经网络的电力系统振荡模态参数动态估计方法。建立了一个人工神经网络模型来分析系统内部的功率振荡扰动,并利用希尔伯特变换方法对其进行训练以估计系统的瞬时参数。一旦针对不同的功率干扰情况训练了人工神经网络模型,它就可以用于与系统相关的任何事件。用两区Kundur系统在不同扰动条件下进行了仿真验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Kernel Width fourth order Maximum Correntropy based VSC control of grid-tied PV-Battery System MRAS Based Sensorless PMSM Drive With Regenerative Braking For Solar PV-Battery Powered EV Design and FPGA Implementation of an Islanding Detection cum Re-synchronisation Technique for a Grid Connected Inverter in a DC Microgrid Delayed LMS Based Adaptive Control of PV-DSTATCOM System Sliding Mode Observer based Rotor Position Estimation with Field Oriented Control of PMBLDC Motor Drive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1