Subspace approximation for adaptive multichannel radar filtering

A. Bojanczyk, W. Melvin, E. J. Holder
{"title":"Subspace approximation for adaptive multichannel radar filtering","authors":"A. Bojanczyk, W. Melvin, E. J. Holder","doi":"10.1109/ACSSC.1998.751585","DOIUrl":null,"url":null,"abstract":"In this paper we consider a subspace approximation tailored to adaptive airborne radar. Motivation for this research includes the need for reduced computational burden and approaches for practical implementation. Measured radar data only approximately satisfies the statistical assumptions intrinsic to the adaptive processor. Hence, approximate numerical methods for adaptive weight computation may successfully be used in place of exact methods. We propose a numerical procedure based on partial bi-diagonalization of the interference covariance matrix, coupled with a preconditioned conjugate gradient iterative method, to approximate the dominant subspace and construct the adaptive weights. Through example, we show the potential of this method for adaptive radar.","PeriodicalId":393743,"journal":{"name":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1998.751585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we consider a subspace approximation tailored to adaptive airborne radar. Motivation for this research includes the need for reduced computational burden and approaches for practical implementation. Measured radar data only approximately satisfies the statistical assumptions intrinsic to the adaptive processor. Hence, approximate numerical methods for adaptive weight computation may successfully be used in place of exact methods. We propose a numerical procedure based on partial bi-diagonalization of the interference covariance matrix, coupled with a preconditioned conjugate gradient iterative method, to approximate the dominant subspace and construct the adaptive weights. Through example, we show the potential of this method for adaptive radar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应多通道雷达滤波的子空间逼近
本文考虑了一种适合自适应机载雷达的子空间逼近方法。本研究的动机包括需要减少计算负担和实际实现的方法。雷达测量数据仅近似地满足自适应处理器固有的统计假设。因此,自适应权值计算的近似数值方法可以成功地代替精确方法。我们提出了一种基于干涉协方差矩阵的部分双对角化的数值方法,结合预条件共轭梯度迭代法来逼近优势子空间并构造自适应权值。通过实例说明了该方法在自适应雷达中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbo multiuser detection Optimal joint azimuth-elevation and signal-array response estimation using parallel factor analysis Adaptive sidelobe blanker: a novel method of performance evaluation and threshold setting in the presence of inhomogeneous clutter Optimal architectures for massively parallel implementation of hard real-time beamformers Low complexity M-hypotheses detection: M vectors case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1