Building Fast Stochastic Surrogate Models for Extracting RL Parameters of Wound Inductors Modeled Using FEM

G. Lossa, O. Deblecker, Z. De Grève, C. Geuzaine
{"title":"Building Fast Stochastic Surrogate Models for Extracting RL Parameters of Wound Inductors Modeled Using FEM","authors":"G. Lossa, O. Deblecker, Z. De Grève, C. Geuzaine","doi":"10.1109/CEFC46938.2020.9451442","DOIUrl":null,"url":null,"abstract":"In this work, fast stochastic surrogate models are derived for extracting RL parameters of wound inductors using the Finite Element method. To this end, the Representative Volume Element (RVE) technique is employed to convert the geometrical uncertainties (e.g. due to conductor positions in the winding window) into material uncertainties (complex permeability and conductivity). The dimensionality of the stochastic input space is in that way reduced, thereby allowing the use of the Polynomial Chaos Expansion (PCE) technique for building the stochastic surrogate.","PeriodicalId":439411,"journal":{"name":"2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEFC46938.2020.9451442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, fast stochastic surrogate models are derived for extracting RL parameters of wound inductors using the Finite Element method. To this end, the Representative Volume Element (RVE) technique is employed to convert the geometrical uncertainties (e.g. due to conductor positions in the winding window) into material uncertainties (complex permeability and conductivity). The dimensionality of the stochastic input space is in that way reduced, thereby allowing the use of the Polynomial Chaos Expansion (PCE) technique for building the stochastic surrogate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于有限元模型的绕线电感器RL参数提取快速随机代理模型的建立
本文采用有限元法建立了快速随机代理模型,用于提取线圈电感器的RL参数。为此,采用代表性体积单元(RVE)技术将几何不确定性(例如,由于导体在绕组窗中的位置)转换为材料不确定性(复杂磁导率和电导率)。随机输入空间的维数以这种方式降低,从而允许使用多项式混沌展开(PCE)技术来构建随机代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Objective Optimization of Medium-Scale Wound-Field Electric Generators Optimization Analysis of Inherent Shaft Voltage in Line-Start Permanent Magnet Synchronous Motor Compact Triplex-layer Metamaterials Design for Wireless Power Transfer Efficiency Enhancement Characteristic Analysis of a Permanent Magnet Eddy-Current Brake Under Strong Impact Load Design of Thin, High Permittivity, Multiband, Monopole-Like Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1