Fingerprint indexing and matching: An integrated approach

Kai Cao, Anil K. Jain
{"title":"Fingerprint indexing and matching: An integrated approach","authors":"Kai Cao, Anil K. Jain","doi":"10.1109/BTAS.2017.8272728","DOIUrl":null,"url":null,"abstract":"Large scale fingerprint recognition systems have been deployed worldwide not only in law enforcement but also in many civilian applications. Thus, it is of great value o identify a query fingerprint in a large background finger-print database both effectively and efficiently based on indexing strategies. The published indexing algorithms do not meet the requirements, especially at low penetrate rates, because of the difficulty in extracting reliable minutiae and other features in low quality fingerprint images. We propose a Convolutional Neural Network (ConvNet) based fingerprint indexing algorithm. An orientation field dictionary is learned to align fingerprints in a unified coordinate system and a large longitudinal fingerprint database, where each finger has multiple impressions over time, is used to train the ConvNet. Experimental results on NIST SD4 and NIST SD14 show that the proposed approach outperforms state-of-the-art fingerprint indexing techniques reported in the literature. Further indexing results on an augmented gallery set of 250K rolled prints demonstrate the scalability of the proposed algorithm. At a penetrate rate of 1%, a score-level fusion of the proposed indexing and a state-of-the-art COTS SDK provides 97.8% rank-1 identification accuracy with a 100-fold reduction in the search space.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Large scale fingerprint recognition systems have been deployed worldwide not only in law enforcement but also in many civilian applications. Thus, it is of great value o identify a query fingerprint in a large background finger-print database both effectively and efficiently based on indexing strategies. The published indexing algorithms do not meet the requirements, especially at low penetrate rates, because of the difficulty in extracting reliable minutiae and other features in low quality fingerprint images. We propose a Convolutional Neural Network (ConvNet) based fingerprint indexing algorithm. An orientation field dictionary is learned to align fingerprints in a unified coordinate system and a large longitudinal fingerprint database, where each finger has multiple impressions over time, is used to train the ConvNet. Experimental results on NIST SD4 and NIST SD14 show that the proposed approach outperforms state-of-the-art fingerprint indexing techniques reported in the literature. Further indexing results on an augmented gallery set of 250K rolled prints demonstrate the scalability of the proposed algorithm. At a penetrate rate of 1%, a score-level fusion of the proposed indexing and a state-of-the-art COTS SDK provides 97.8% rank-1 identification accuracy with a 100-fold reduction in the search space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
指纹索引和匹配:一个集成的方法
大规模的指纹识别系统不仅在执法部门,而且在许多民用领域得到了广泛的应用。因此,基于索引策略在大型后台指纹数据库中高效地识别查询指纹具有重要的意义。由于在低质量指纹图像中难以提取可靠的细节和其他特征,现有的索引算法不能满足要求,特别是在低穿透率下。提出一种基于卷积神经网络(ConvNet)的指纹索引算法。学习方向场字典将指纹对齐到统一的坐标系统中,并使用大型纵向指纹数据库来训练卷积神经网络,其中每个手指随着时间的推移有多个印痕。在NIST SD4和NIST SD14上的实验结果表明,所提出的方法优于文献中报道的最先进的指纹索引技术。对250K卷印刷品扩充图库集的进一步索引结果证明了该算法的可扩展性。在1%的渗透率下,提议的索引和最先进的COTS SDK的分数级融合提供了97.8%的1级识别准确率,搜索空间减少了100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1