Myanmar Text-to-Speech Synthesis Using End-to-End Model

Qinglai Qin, Jian Yang, Peiying Li
{"title":"Myanmar Text-to-Speech Synthesis Using End-to-End Model","authors":"Qinglai Qin, Jian Yang, Peiying Li","doi":"10.1145/3443279.3443295","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Myanmar speech synthesis system based on an End-to-End neural network model, which integrates the Myanmar phone model into the Tacotron2 End-to-End model. Based on the Seq2seq model architecture, we use phone-level embedding to form a feature prediction network from phone sequences to Mel spectrum, and combine with a semi-supervised speech generation network to generate high-quality Myanmar synthesized speech. In addition, we introduced the BERT pre-training decoder module to assist the phone feature extraction, which reduces the system's dependence on the phone feature extraction network and improve the text feature richness. Compared with other Myanmar speech synthesis systems, this method effectively improves the naturalness and accuracy of synthesized speech under low resource conditions.","PeriodicalId":414366,"journal":{"name":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3443279.3443295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a Myanmar speech synthesis system based on an End-to-End neural network model, which integrates the Myanmar phone model into the Tacotron2 End-to-End model. Based on the Seq2seq model architecture, we use phone-level embedding to form a feature prediction network from phone sequences to Mel spectrum, and combine with a semi-supervised speech generation network to generate high-quality Myanmar synthesized speech. In addition, we introduced the BERT pre-training decoder module to assist the phone feature extraction, which reduces the system's dependence on the phone feature extraction network and improve the text feature richness. Compared with other Myanmar speech synthesis systems, this method effectively improves the naturalness and accuracy of synthesized speech under low resource conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用端到端模型的缅甸文本到语音合成
本文提出了一种基于端到端神经网络模型的缅甸语语音合成系统,该系统将缅甸电话模型集成到Tacotron2端到端模型中。基于Seq2seq模型架构,采用电话级嵌入,形成从电话序列到Mel谱的特征预测网络,并结合半监督语音生成网络,生成高质量的缅甸语合成语音。此外,我们引入了BERT预训练解码器模块来辅助手机特征提取,减少了系统对手机特征提取网络的依赖,提高了文本特征的丰富度。与其他缅甸语语音合成系统相比,该方法有效提高了低资源条件下合成语音的自然度和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ranking Hotel Reviews Based on User's Aspects Importance and Opinions Research on Information Extraction of Municipal Solid Waste Crisis using BERT-LSTM-CRF A Classification on Different Aspects of User Modelling in Personalized Web Search Automatic Summarization of Stock Market News Articles IME-Spell: Chinese Spelling Check based on Input Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1