NIR-Tree: A Non-Intersecting R-Tree

K. Langendoen, Brad Glasbergen, Khuzaima S. Daudjee
{"title":"NIR-Tree: A Non-Intersecting R-Tree","authors":"K. Langendoen, Brad Glasbergen, Khuzaima S. Daudjee","doi":"10.1145/3468791.3468818","DOIUrl":null,"url":null,"abstract":"Indexes for multidimensional data based on the R-Tree are popularly used by databases for a wide range of applications. Such index trees support point and range queries but are costly to construct over datasets of millions of points. We present the Non-Intersecting R-Tree (NIR-Tree), a novel insert-efficient, in-memory, multidimensional index that uses bounding polygons to provide efficient point and range query performance while indexing data at least an order of magnitude faster. The NIR-Tree leverages non-intersecting bounding polygons to reduce the number of nodes accessed during queries, compared to existing R-family indexes. Our experiments demonstrate that inserting into a NIR-Tree is 27 × faster than the ubiquitous R*-Tree, with point queries completing 2 × faster and range queries executing just as quickly.","PeriodicalId":312773,"journal":{"name":"33rd International Conference on Scientific and Statistical Database Management","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468791.3468818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Indexes for multidimensional data based on the R-Tree are popularly used by databases for a wide range of applications. Such index trees support point and range queries but are costly to construct over datasets of millions of points. We present the Non-Intersecting R-Tree (NIR-Tree), a novel insert-efficient, in-memory, multidimensional index that uses bounding polygons to provide efficient point and range query performance while indexing data at least an order of magnitude faster. The NIR-Tree leverages non-intersecting bounding polygons to reduce the number of nodes accessed during queries, compared to existing R-family indexes. Our experiments demonstrate that inserting into a NIR-Tree is 27 × faster than the ubiquitous R*-Tree, with point queries completing 2 × faster and range queries executing just as quickly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
nir树:一种不相交的r树
基于R-Tree的多维数据索引被数据库广泛用于各种应用程序。这样的索引树支持点和范围查询,但在数百万个点的数据集上构建成本很高。我们提出了非相交r树(NIR-Tree),这是一种新的插入效率,内存中的多维索引,它使用边界多边形提供有效的点和范围查询性能,同时索引数据的速度至少提高了一个数量级。与现有的r族索引相比,NIR-Tree利用非相交的边界多边形来减少查询期间访问的节点数量。我们的实验表明,插入到NIR-Tree中的速度比普遍存在的R*-Tree快27倍,点查询完成速度快2倍,范围查询执行速度也一样快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Caching Support for Range Query Processing on Bitmap Indices Distributed Enumeration of Four Node Graphlets at Quadrillion-Scale Automatic Selection of Analytic Platforms with ASAP-DM HInT: Hybrid and Incremental Type Discovery for Large RDF Data Sources On Lowering Merge Costs of an LSM Tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1