Unsupervised Nonlinear Manifold Learning

M. Brucher, C. Heinrich, F. Heitz, J. Armspach
{"title":"Unsupervised Nonlinear Manifold Learning","authors":"M. Brucher, C. Heinrich, F. Heitz, J. Armspach","doi":"10.1109/ICIP.2007.4379104","DOIUrl":null,"url":null,"abstract":"This communication deals with data reduction and regression. A set of high dimensional data (e.g., images) usually has only a few degrees of freedom with corresponding variables that are used to parameterize the original data set. Data understanding, visualization and classification are the usual goals. The proposed method reduces data considering a unique set of low-dimensional variables and a user-defined cost function in the multidimensional scaling framework. Mapping of the reduced variables to the original data is also addressed, which is another contribution of this work. Typical data reduction methods, such as Isomap or LLE, do not deal with this important aspect of manifold learning. We also tackle the inversion of the mapping, which makes it possible to project high-dimensional noisy points onto the manifold, like PCA with linear models. We present an application of our approach to several standard data sets such as the SwissRoll.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This communication deals with data reduction and regression. A set of high dimensional data (e.g., images) usually has only a few degrees of freedom with corresponding variables that are used to parameterize the original data set. Data understanding, visualization and classification are the usual goals. The proposed method reduces data considering a unique set of low-dimensional variables and a user-defined cost function in the multidimensional scaling framework. Mapping of the reduced variables to the original data is also addressed, which is another contribution of this work. Typical data reduction methods, such as Isomap or LLE, do not deal with this important aspect of manifold learning. We also tackle the inversion of the mapping, which makes it possible to project high-dimensional noisy points onto the manifold, like PCA with linear models. We present an application of our approach to several standard data sets such as the SwissRoll.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无监督非线性流形学习
这种通信处理数据约简和回归。一组高维数据(例如,图像)通常只有几个自由度,具有用于参数化原始数据集的相应变量。数据理解、可视化和分类是通常的目标。该方法在多维标度框架中考虑一组独特的低维变量和用户自定义的代价函数来减少数据量。还讨论了将约简变量映射到原始数据的问题,这是本工作的另一个贡献。典型的数据约简方法,如Isomap或LLE,不处理流形学习的这一重要方面。我们还解决了映射的反演,这使得将高维噪声点投影到流形上成为可能,就像线性模型的PCA一样。我们将我们的方法应用于几个标准数据集,如SwissRoll。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1