Biologically-inspired approaches to higher-level information fusion

B. Rhodes
{"title":"Biologically-inspired approaches to higher-level information fusion","authors":"B. Rhodes","doi":"10.1109/ICIF.2007.4408213","DOIUrl":null,"url":null,"abstract":"Contemporary situational awareness problems such as automated normalcy learning for anomaly detection and motion behavior prediction are addressed with biologically-inspired processing, representation, and learning approaches. Issues and challenges are discussed and our responses to them described. Relatively simple neural principles provide considerable power in providing capabilities required to learn models of normal motion behavior and utilize those models to identify unusual behavior or determine the most likely future behavior of objects of interest.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Contemporary situational awareness problems such as automated normalcy learning for anomaly detection and motion behavior prediction are addressed with biologically-inspired processing, representation, and learning approaches. Issues and challenges are discussed and our responses to them described. Relatively simple neural principles provide considerable power in providing capabilities required to learn models of normal motion behavior and utilize those models to identify unusual behavior or determine the most likely future behavior of objects of interest.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受生物学启发的高层次信息融合方法
当代态势感知问题,如异常检测和运动行为预测的自动正常学习,都是通过生物启发的处理、表示和学习方法来解决的。讨论问题和挑战,并描述我们对它们的反应。相对简单的神经原理提供了相当大的能力,提供了学习正常运动行为模型所需的能力,并利用这些模型来识别异常行为或确定感兴趣对象最有可能的未来行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-autonomous reference data generation for perception performance evaluation Track association and fusion with heterogeneous local trackers Distributed detection of a nuclear radioactive source using fusion of correlated decisions Distributed data fusion algorithms for tracking a maneuvering target Multi agent systems for flexible and robust Bayesian information fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1