Parameter Set-mapping using kernel-based PCA for linear parameter-varying systems

S. Z. Rizvi, J. Mohammadpour, R. Tóth, N. Meskin
{"title":"Parameter Set-mapping using kernel-based PCA for linear parameter-varying systems","authors":"S. Z. Rizvi, J. Mohammadpour, R. Tóth, N. Meskin","doi":"10.1109/ECC.2014.6862571","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for reduction of scheduling dependency in linear parameter-varying (LPV) systems. In particular, both the dimension of the scheduling variable and the corresponding scheduling region are shrunk using kernel-based principal component analysis (PCA). Kernel PCA corresponds to linear PCA that is performed in a high-dimensional feature space, allowing the extension of linear PCA to nonlinear dimensionality reduction. Hence, it enables the reduction of complicated coefficient dependencies which cannot be simplified in a linear subspace, giving kernel PCA an advantage over other linear techniques. This corresponds to mapping the original scheduling variables to a set of lower dimensional variables via a nonlinear mapping. However, to recover the original coefficient functions of the model, this nonlinear mapping is needed to be inverted. Such an inversion is not straightforward. The reduced scheduling variables are a nonlinear expansion of the original scheduling variables into a high-dimensional feature space, an inverse mapping for which is not available. Therefore, we cannot generally assert that such an expansion has a “pre-image” in the original scheduling region. While certain pre-image approximation algorithms are found in the literature for Gaussian kernel-based PCA, we aim to generalize the pre-image estimation algorithm to other commonly used kernels, and formulate an iterative pre-image estimation rule. Finally, we consider the case study of a physical system described by an LPV model and compare the performance of linear and kernel PCA-based LPV model reduction.","PeriodicalId":251538,"journal":{"name":"2014 European Control Conference (ECC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECC.2014.6862571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes a method for reduction of scheduling dependency in linear parameter-varying (LPV) systems. In particular, both the dimension of the scheduling variable and the corresponding scheduling region are shrunk using kernel-based principal component analysis (PCA). Kernel PCA corresponds to linear PCA that is performed in a high-dimensional feature space, allowing the extension of linear PCA to nonlinear dimensionality reduction. Hence, it enables the reduction of complicated coefficient dependencies which cannot be simplified in a linear subspace, giving kernel PCA an advantage over other linear techniques. This corresponds to mapping the original scheduling variables to a set of lower dimensional variables via a nonlinear mapping. However, to recover the original coefficient functions of the model, this nonlinear mapping is needed to be inverted. Such an inversion is not straightforward. The reduced scheduling variables are a nonlinear expansion of the original scheduling variables into a high-dimensional feature space, an inverse mapping for which is not available. Therefore, we cannot generally assert that such an expansion has a “pre-image” in the original scheduling region. While certain pre-image approximation algorithms are found in the literature for Gaussian kernel-based PCA, we aim to generalize the pre-image estimation algorithm to other commonly used kernels, and formulate an iterative pre-image estimation rule. Finally, we consider the case study of a physical system described by an LPV model and compare the performance of linear and kernel PCA-based LPV model reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核主成分分析的线性变参数系统参数集映射
提出了一种线性变参数系统调度依赖性的减少方法。特别地,利用基于核的主成分分析(PCA)对调度变量和相应调度区域的维数进行了缩减。核主成分分析对应于在高维特征空间中执行的线性主成分分析,允许将线性主成分分析扩展到非线性降维。因此,它能够减少在线性子空间中无法简化的复杂系数依赖关系,使核PCA优于其他线性技术。这对应于通过非线性映射将原始调度变量映射到一组低维变量。然而,为了恢复模型的原始系数函数,需要对这种非线性映射进行反转。这样的倒置并不简单。简化后的调度变量是原始调度变量在高维特征空间中的非线性展开,其逆映射是不可用的。因此,我们一般不能断言这种扩展在原调度区域有“预映像”。虽然文献中已经发现了一些基于高斯核的PCA预像近似算法,但我们的目标是将预像估计算法推广到其他常用的核,并制定迭代的预像估计规则。最后,我们考虑了一个由LPV模型描述的物理系统的案例研究,并比较了线性和基于核pca的LPV模型约简的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness under saturated feedback: Strong iISS for a class of nonlinear systems Least squares end performance experiment design in multicarrier systems: The sparse preamble case Multi-model, multi-objective tuning of fixed-structure controllers Control systems on three-dimensional lie groups On solving periodic ℋ2-optimal fault detection and isolation problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1