MwoA auxiliary diagnosis via RSN-based 3D deep multiple instance learning with spatial attention mechanism

Xiang Li, B. Wei, Tianyang Li, N. Zhang
{"title":"MwoA auxiliary diagnosis via RSN-based 3D deep multiple instance learning with spatial attention mechanism","authors":"Xiang Li, B. Wei, Tianyang Li, N. Zhang","doi":"10.1109/iCAST51195.2020.9319486","DOIUrl":null,"url":null,"abstract":"Migraine without aura (MwoA) is the most typical migraine disease in the clinic, which is endangered to human health and challenging to diagnose. Developing the auxiliary diagnosis algorithms of MwoA based on functional connectivity (FC) changes from resting-state functional magnetic resonance imaging (rs-fMRI) is an important research domain. However, existing auxiliary diagnostic methods mainly adopt a seed-based correlation method to extract FC, which are easily affected by subjective factors. Moreover, those methods neglect the relationship between changes in FC and disease duration. In this paper, we report a weakly supervised learning method aiming to tackle those issues. We propose a resting-state brain network-based 3D deep multiple instance learning with spatial attention mechanism (R3D-DMILSAM) framework, where the patient-level label is allocated to the rs-fMRI data that view as multiple instances of a bag. R3D-DMILSAM uses the group information guided independent component analysis (GIG-ICA) to generate the subject-specific resting-state brain networks (RSNs). After that, the designed spatial attention-based 3D deep multiple instance learning (SA3D-DMIL) is trained to perform the diagnosis of MwoA. SA3D-DMIL can automatically generate several semantic deep instances and discovers abnormal RSNs using spatial attention mechanism. Extensive experimental results on the MwoA dataset show that R3D-DMILSAM achieves an overall accuracy of 88.80% and AUC of 94.70%. The visual network obtains high weight, which could be used as a potential biomarker for individualized diagnosis of MwoA.","PeriodicalId":212570,"journal":{"name":"2020 11th International Conference on Awareness Science and Technology (iCAST)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCAST51195.2020.9319486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Migraine without aura (MwoA) is the most typical migraine disease in the clinic, which is endangered to human health and challenging to diagnose. Developing the auxiliary diagnosis algorithms of MwoA based on functional connectivity (FC) changes from resting-state functional magnetic resonance imaging (rs-fMRI) is an important research domain. However, existing auxiliary diagnostic methods mainly adopt a seed-based correlation method to extract FC, which are easily affected by subjective factors. Moreover, those methods neglect the relationship between changes in FC and disease duration. In this paper, we report a weakly supervised learning method aiming to tackle those issues. We propose a resting-state brain network-based 3D deep multiple instance learning with spatial attention mechanism (R3D-DMILSAM) framework, where the patient-level label is allocated to the rs-fMRI data that view as multiple instances of a bag. R3D-DMILSAM uses the group information guided independent component analysis (GIG-ICA) to generate the subject-specific resting-state brain networks (RSNs). After that, the designed spatial attention-based 3D deep multiple instance learning (SA3D-DMIL) is trained to perform the diagnosis of MwoA. SA3D-DMIL can automatically generate several semantic deep instances and discovers abnormal RSNs using spatial attention mechanism. Extensive experimental results on the MwoA dataset show that R3D-DMILSAM achieves an overall accuracy of 88.80% and AUC of 94.70%. The visual network obtains high weight, which could be used as a potential biomarker for individualized diagnosis of MwoA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间注意机制的rsn三维深度多实例学习辅助诊断MwoA
无先兆偏头痛(MwoA)是临床上最典型的偏头痛疾病,危害人体健康,诊断难度大。基于静息状态功能磁共振成像(rs-fMRI)的功能连通性变化开发MwoA的辅助诊断算法是一个重要的研究领域。然而,现有的辅助诊断方法主要采用基于种子的相关方法提取FC,容易受到主观因素的影响。此外,这些方法忽略了FC变化与病程之间的关系。在本文中,我们报告了一种弱监督学习方法,旨在解决这些问题。我们提出了一个基于静息状态大脑网络的三维深度多实例学习空间注意机制(R3D-DMILSAM)框架,其中患者级别的标签被分配给rs-fMRI数据,这些数据被视为一个袋子的多个实例。R3D-DMILSAM使用群体信息引导的独立成分分析(giga - ica)来生成受试者特定的静息状态脑网络(rsn)。然后,训练设计的基于空间注意的三维深度多实例学习(SA3D-DMIL)进行MwoA诊断。sa3d - dil可以自动生成多个语义深度实例,并利用空间注意机制发现异常的rsn。在MwoA数据集上的大量实验结果表明,R3D-DMILSAM的总体准确率为88.80%,AUC为94.70%。视觉网络获得了较高的权重,可作为MwoA个体化诊断的潜在生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skeleton Guided Conflict-Free Hand Gesture Recognition for Robot Control Improved Spiking Neural Networks with multiple neurons for digit recognition A Lightweight Transformer with Convolutional Attention Social Media Mining with Dynamic Clustering: A Case Study by COVID-19 Tweets A Visual-SLAM based Line Laser Scanning System using Semantically Segmented Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1