Intelligent Voice ASR system for Iberspeech 2018 Speech to Text Transcription Challenge

Nazim Dugan, C. Glackin, Gérard Chollet, Nigel Cannings
{"title":"Intelligent Voice ASR system for Iberspeech 2018 Speech to Text Transcription Challenge","authors":"Nazim Dugan, C. Glackin, Gérard Chollet, Nigel Cannings","doi":"10.21437/IBERSPEECH.2018-57","DOIUrl":null,"url":null,"abstract":"This paper describes the system developed by the Empathic team for the open set condition of the Iberspeech 2018 Speech to Text Transcription Challenge. A DNN-HMM hybrid acoustic model is developed, with MFCC's and iVectors as input features, using the Kaldi framework. The provided ground truth transcriptions for training and development are cleaned up using customized clean-up scripts and then realigned using a two-step alignment procedure which uses word lattice results coming from a previous ASR system. 261 hours of data is selected from train and dev1 subsections of the provided data, by applying a selection criterion on the utterance level scoring results. The selected data is merged with the 91 hours of training data used to train the previous ASR system with a factor 3 times data augmentation by reverberation using a noise corpus on the total training data, resulting a total of 1057 hours of final …","PeriodicalId":115963,"journal":{"name":"IberSPEECH Conference","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IberSPEECH Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/IBERSPEECH.2018-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the system developed by the Empathic team for the open set condition of the Iberspeech 2018 Speech to Text Transcription Challenge. A DNN-HMM hybrid acoustic model is developed, with MFCC's and iVectors as input features, using the Kaldi framework. The provided ground truth transcriptions for training and development are cleaned up using customized clean-up scripts and then realigned using a two-step alignment procedure which uses word lattice results coming from a previous ASR system. 261 hours of data is selected from train and dev1 subsections of the provided data, by applying a selection criterion on the utterance level scoring results. The selected data is merged with the 91 hours of training data used to train the previous ASR system with a factor 3 times data augmentation by reverberation using a noise corpus on the total training data, resulting a total of 1057 hours of final …
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iberspeech 2018语音到文本转录挑战赛的智能语音ASR系统
本文描述了移情团队为Iberspeech 2018 Speech to Text Transcription Challenge的开放设置条件开发的系统。采用Kaldi框架,建立了以MFCC和矢量为输入特征的DNN-HMM混合声学模型。为培训和发展提供的基础真相转录使用定制的清理脚本进行清理,然后使用两步对齐程序重新对齐,该程序使用来自先前ASR系统的词格结果。通过对话语水平评分结果应用选择标准,从所提供数据的train和dev1小节中选择261小时的数据。选择的数据与之前用于训练ASR系统的91小时训练数据合并,并在总训练数据上使用噪声语料库进行混响,使数据增加3倍,从而获得总计1057小时的最终数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Recurrent Neural Network Approach to Audio Segmentation for Broadcast Domain Data The Intelligent Voice System for the IberSPEECH-RTVE 2018 Speaker Diarization Challenge AUDIAS-CEU: A Language-independent approach for the Query-by-Example Spoken Term Detection task of the Search on Speech ALBAYZIN 2018 evaluation The GTM-UVIGO System for Audiovisual Diarization Baseline Acoustic Models for Brazilian Portuguese Using Kaldi Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1