LFTag: A Scalable Visual Fiducial System with Low Spatial Frequency

Ben Wang
{"title":"LFTag: A Scalable Visual Fiducial System with Low Spatial Frequency","authors":"Ben Wang","doi":"10.1109/CTISC49998.2020.00030","DOIUrl":null,"url":null,"abstract":"Visual fiducial systems are a key component of many robotics and AR/VR applications for 6-DOF monocular relative pose estimation and target identification. This paper presents LFTag, a visual fiducial system based on topological detection and relative position data encoding which optimizes data density within spatial frequency constraints. The marker is constructed to resolve rotational ambiguity, which combined with the robust geometric and topological false positive rejection, allows all marker bits to be used for data.When compared to existing state-of-the-art square binary markers (AprilTag) and topological markers (TopoTag) in simulation, the proposed fiducial system (LFTag) offers significant advances in dictionary size and range. LFTag 3×3 achieves 546 times the dictionary size of AprilTag 25h9 and LFTag 4×4 achieves 126 thousand times the dictionary size of AprilTag 41h12 while simultaneously achieving longer detection range. LFTag 3×3 also achieves more than twice the detection range of TopoTag 4×4 at the same dictionary size.","PeriodicalId":266384,"journal":{"name":"2020 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CTISC49998.2020.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Visual fiducial systems are a key component of many robotics and AR/VR applications for 6-DOF monocular relative pose estimation and target identification. This paper presents LFTag, a visual fiducial system based on topological detection and relative position data encoding which optimizes data density within spatial frequency constraints. The marker is constructed to resolve rotational ambiguity, which combined with the robust geometric and topological false positive rejection, allows all marker bits to be used for data.When compared to existing state-of-the-art square binary markers (AprilTag) and topological markers (TopoTag) in simulation, the proposed fiducial system (LFTag) offers significant advances in dictionary size and range. LFTag 3×3 achieves 546 times the dictionary size of AprilTag 25h9 and LFTag 4×4 achieves 126 thousand times the dictionary size of AprilTag 41h12 while simultaneously achieving longer detection range. LFTag 3×3 also achieves more than twice the detection range of TopoTag 4×4 at the same dictionary size.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LFTag:一种可扩展的低空间频率视觉基准系统
视觉基准系统是许多机器人和AR/VR应用的关键组成部分,用于6自由度单眼相对姿态估计和目标识别。本文提出了一种基于拓扑检测和相对位置数据编码的视觉基准系统LFTag,该系统在空间频率约束下优化了数据密度。该标记用于解决旋转模糊,结合鲁棒的几何和拓扑误报抑制,允许所有标记位用于数据。与仿真中现有的最先进的正方形二进制标记(AprilTag)和拓扑标记(TopoTag)相比,所提出的基准系统(LFTag)在字典大小和范围方面提供了显着的进步。LFTag 3×3达到了AprilTag 25h9字典大小的546倍,LFTag 4×4达到了AprilTag 41h12字典大小的12.6万倍,同时实现了更长的检测范围。在相同字典大小的情况下,LFTag 3×3的检测范围是TopoTag 4×4的两倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neurons identification of single-photon wide-field calcium fluorescent imaging data CTISC 2020 List Reviewer Page CTISC 2020 Commentary Image data augmentation method based on maximum activation point guided erasure Sponsors and Supporters: CTISC 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1