A Fast Lossless Implementation Of The Intra Subpartition Mode For VVC

Santiago De-Luxán-Hernández, Gayathri Venugopal, Valeri George, H. Schwarz, D. Marpe, T. Wiegand
{"title":"A Fast Lossless Implementation Of The Intra Subpartition Mode For VVC","authors":"Santiago De-Luxán-Hernández, Gayathri Venugopal, Valeri George, H. Schwarz, D. Marpe, T. Wiegand","doi":"10.1109/ICIP40778.2020.9191103","DOIUrl":null,"url":null,"abstract":"Lossy compression is the main target of the upcoming video coding standard Versatile Video Coding (VVC). However, lossless coding is supported in VVC by utilizing a certain encoder configuration. Particularly, the Transform Skip Mode (TSM) is always selected at the block level to bypass the transform stage (together with a QP that results in the same output as input at the quantization stage). Consequently, the Intra Subpartition (ISP) coding mode cannot be used for lossless coding, considering that its combination with TSM is not supported in VVC because it does not provide a significant coding benefit for the lossy common test conditions. For this reason, it is proposed to enable such a combination for the benefit of lossless coding. Besides, the encoder search has been optimized to improve the trade-off between compression benefit and encoder run-time. Experimental results show a 0.71% coding gain with a corresponding encoder run-time of 111%.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Lossy compression is the main target of the upcoming video coding standard Versatile Video Coding (VVC). However, lossless coding is supported in VVC by utilizing a certain encoder configuration. Particularly, the Transform Skip Mode (TSM) is always selected at the block level to bypass the transform stage (together with a QP that results in the same output as input at the quantization stage). Consequently, the Intra Subpartition (ISP) coding mode cannot be used for lossless coding, considering that its combination with TSM is not supported in VVC because it does not provide a significant coding benefit for the lossy common test conditions. For this reason, it is proposed to enable such a combination for the benefit of lossless coding. Besides, the encoder search has been optimized to improve the trade-off between compression benefit and encoder run-time. Experimental results show a 0.71% coding gain with a corresponding encoder run-time of 111%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于VVC的内部子分区模式的快速无损实现
有损压缩是即将推出的视频编码标准通用视频编码(VVC)的主要目标。然而,无损编码在VVC中是通过使用一定的编码器配置来支持的。特别是,总是在块级别选择转换跳过模式(TSM)以绕过转换阶段(以及在量化阶段产生与输入相同输出的QP)。因此,ISP (Intra Subpartition)编码模式不能用于无损编码,因为在VVC中不支持它与TSM的组合,因为它不能为有损的常见测试条件提供显著的编码优势。因此,建议启用这样的组合以获得无损编码的好处。此外,还对编码器搜索进行了优化,以改善压缩效益和编码器运行时间之间的权衡。实验结果表明,编码增益为0.71%,编码器运行时间为111%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1