Oracle inequalities for multi-fold cross validation

A. Vaart, S. Dudoit, M. Laan
{"title":"Oracle inequalities for multi-fold cross validation","authors":"A. Vaart, S. Dudoit, M. Laan","doi":"10.1524/STND.2006.24.3.351","DOIUrl":null,"url":null,"abstract":"We consider choosing an estimator or model from a given class by cross validation consisting of holding a nonneglible fraction of the observations out as a test set. We derive bounds that show that the risk of the resulting procedure is (up to a constant) smaller than the risk of an oracle plus an error which typically grows logarithmically with the number of estimators in the class. We extend the results to penalized cross validation in order to control unbounded loss functions. Applications include regression with squared and absolute deviation loss and classification under Tsybakov’s condition.","PeriodicalId":380446,"journal":{"name":"Statistics & Decisions","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1524/STND.2006.24.3.351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156

Abstract

We consider choosing an estimator or model from a given class by cross validation consisting of holding a nonneglible fraction of the observations out as a test set. We derive bounds that show that the risk of the resulting procedure is (up to a constant) smaller than the risk of an oracle plus an error which typically grows logarithmically with the number of estimators in the class. We extend the results to penalized cross validation in order to control unbounded loss functions. Applications include regression with squared and absolute deviation loss and classification under Tsybakov’s condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多重交叉验证的Oracle不等式
我们考虑通过交叉验证从给定的类中选择一个估计器或模型,该交叉验证包括将观测值的不可忽略的部分作为测试集。我们推导出的界限表明,结果过程的风险(直到一个常数)小于oracle的风险加上一个通常随着类中估计器的数量呈对数增长的误差。我们将结果扩展到惩罚交叉验证,以控制无界损失函数。应用包括平方和绝对偏差损失回归和Tsybakov条件下的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A BAYESIAN APPROACH TO INCORPORATE MODEL AMBIGUITY IN A DYNAMIC RISK MEASURE Efficient estimation of a linear functional of a bivariate distribution with equal, but unknown, marginals: The minimum chi-square approach Locally asymptotically optimal tests in semiparametric generalized linear models in the 2-sample-problem Maximum likelihood estimator in a two-phase nonlinear random regression model Confidence estimation of the covariance function of stationary and locally stationary processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1