{"title":"Demand-side energy storage system management in smart grid","authors":"Wei-Yu Chiu, Hongjian Sun, Vincent H. Poor","doi":"10.1109/SmartGridComm.2012.6485962","DOIUrl":null,"url":null,"abstract":"An economical way to manage demand-side energy storage systems in the smart grid is proposed by using an H∞ design. The proposed design can adjust the stored energy state economically according to the price signal, while tolerating a certain degree of system uncertainty and having physical constraints on the stored energy level satisfied. Roughly speaking, batteries in the proposed design are charged during a low-price period while being discharged during a high-price period for cost control. Simulations show that the proposed energy storage system can meet the real-time power demand and save money in the long term in contrast to energy storage systems using constant-state schemes.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2012.6485962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
An economical way to manage demand-side energy storage systems in the smart grid is proposed by using an H∞ design. The proposed design can adjust the stored energy state economically according to the price signal, while tolerating a certain degree of system uncertainty and having physical constraints on the stored energy level satisfied. Roughly speaking, batteries in the proposed design are charged during a low-price period while being discharged during a high-price period for cost control. Simulations show that the proposed energy storage system can meet the real-time power demand and save money in the long term in contrast to energy storage systems using constant-state schemes.