AMRZone: A Runtime AMR Data Sharing Framework for Scientific Applications

Wenzhao Zhang, Houjun Tang, Steve Harenberg, S. Byna, Xiaocheng Zou, D. Devendran, Daniel F. Martin, Kesheng Wu, Bin Dong, S. Klasky, N. Samatova
{"title":"AMRZone: A Runtime AMR Data Sharing Framework for Scientific Applications","authors":"Wenzhao Zhang, Houjun Tang, Steve Harenberg, S. Byna, Xiaocheng Zou, D. Devendran, Daniel F. Martin, Kesheng Wu, Bin Dong, S. Klasky, N. Samatova","doi":"10.1109/CCGrid.2016.62","DOIUrl":null,"url":null,"abstract":"Frameworks that facilitate runtime data sharingacross multiple applications are of great importance for scientificdata analytics. Although existing frameworks work well overuniform mesh data, they can not effectively handle adaptive meshrefinement (AMR) data. Among the challenges to construct anAMR-capable framework include: (1) designing an architecturethat facilitates online AMR data management, (2) achievinga load-balanced AMR data distribution for the data stagingspace at runtime, and (3) building an effective online indexto support the unique spatial data retrieval requirements forAMR data. Towards addressing these challenges to supportruntime AMR data sharing across scientific applications, wepresent the AMRZone framework. Experiments over real-worldAMR datasets demonstrate AMRZone's effectiveness at achievinga balanced workload distribution, reading/writing large-scaledatasets with thousands of parallel processes, and satisfyingqueries with spatial constraints. Moreover, AMRZone's performance and scalability are even comparable with existing state-of-the-art work when tested over uniform mesh data with up to16384 cores, in the best case, our framework achieves a 46% performance improvement.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Frameworks that facilitate runtime data sharingacross multiple applications are of great importance for scientificdata analytics. Although existing frameworks work well overuniform mesh data, they can not effectively handle adaptive meshrefinement (AMR) data. Among the challenges to construct anAMR-capable framework include: (1) designing an architecturethat facilitates online AMR data management, (2) achievinga load-balanced AMR data distribution for the data stagingspace at runtime, and (3) building an effective online indexto support the unique spatial data retrieval requirements forAMR data. Towards addressing these challenges to supportruntime AMR data sharing across scientific applications, wepresent the AMRZone framework. Experiments over real-worldAMR datasets demonstrate AMRZone's effectiveness at achievinga balanced workload distribution, reading/writing large-scaledatasets with thousands of parallel processes, and satisfyingqueries with spatial constraints. Moreover, AMRZone's performance and scalability are even comparable with existing state-of-the-art work when tested over uniform mesh data with up to16384 cores, in the best case, our framework achieves a 46% performance improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AMRZone:用于科学应用的运行时AMR数据共享框架
促进跨多个应用程序运行时数据共享的框架对于科学数据分析非常重要。虽然现有框架可以很好地处理均匀网格数据,但它们不能有效地处理自适应网格细化(AMR)数据。构建一个支持AMR的框架面临的挑战包括:(1)设计一个便于在线AMR数据管理的体系结构;(2)在运行时实现数据登台空间的负载均衡的AMR数据分布;(3)构建一个有效的在线索引,以支持AMR数据独特的空间数据检索需求。为了解决这些挑战,支持跨科学应用程序的运行时AMR数据共享,我们提出了AMRZone框架。在真实世界的damr数据集上的实验表明,AMRZone在实现平衡的工作负载分布、读写具有数千个并行进程的大规模数据集以及满足空间约束的查询方面是有效的。此外,AMRZone的性能和可扩展性甚至可以与现有的最先进的工作相媲美,当在多达16384个内核的均匀网格数据上进行测试时,在最好的情况下,我们的框架实现了46%的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm DiBA: Distributed Power Budget Allocation for Large-Scale Computing Clusters Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era DTStorage: Dynamic Tape-Based Storage for Cost-Effective and Highly-Available Streaming Service Facilitating the Execution of HPC Workloads in Colombia through the Integration of a Private IaaS and a Scientific PaaS/SaaS Marketplace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1