Churn Prediction in Payment Terminals Using RFM model and Deep Neural Network

M. Dadfarnia, Ali Alemi Matinpour, M. Abdoos
{"title":"Churn Prediction in Payment Terminals Using RFM model and Deep Neural Network","authors":"M. Dadfarnia, Ali Alemi Matinpour, M. Abdoos","doi":"10.1109/IKT51791.2020.9345626","DOIUrl":null,"url":null,"abstract":"In recent years, there is remarkable growing concern for marketing team to retain their customers. This can be achieved by predicting accurately ahead of time, whether a terminal for buying is valuable in the foreseeable future or not. This paper presents the application of Deep Neural Network in the issue of classifying the payment terminals in different branches of Parsian bank specifically. The paper uses real data for classifying various payment terminals in 6 classes of terminal by a 5 layer deep neural network and RFM model. The empirical results reveal that utilizing the deep network generate significantly better accuracy in comparison with other popular methods.","PeriodicalId":382725,"journal":{"name":"2020 11th International Conference on Information and Knowledge Technology (IKT)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT51791.2020.9345626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, there is remarkable growing concern for marketing team to retain their customers. This can be achieved by predicting accurately ahead of time, whether a terminal for buying is valuable in the foreseeable future or not. This paper presents the application of Deep Neural Network in the issue of classifying the payment terminals in different branches of Parsian bank specifically. The paper uses real data for classifying various payment terminals in 6 classes of terminal by a 5 layer deep neural network and RFM model. The empirical results reveal that utilizing the deep network generate significantly better accuracy in comparison with other popular methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RFM模型和深度神经网络的支付终端流失预测
近年来,人们越来越关注营销团队如何留住客户。这可以通过提前准确预测购买终端在可预见的未来是否有价值来实现。本文具体介绍了深度神经网络在巴黎银行不同分支机构支付终端分类问题中的应用。本文利用真实数据,利用5层深度神经网络和RFM模型,将各类支付终端分为6类。实证结果表明,与其他流行的方法相比,使用深度网络可以显著提高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Sentence Ordering Method using BERT Pretrained Model Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-Shot Rate Region Business Process Improvement Challenges: A Systematic Literature Review The risk prediction of heart disease by using neuro-fuzzy and improved GOA Distributed Learning Automata-Based Algorithm for Finding K-Clique in Complex Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1