A Comparative Study of PCA, LDA and Kernel LDA for Image Classification

Fei Ye, Zhiping Shi, Zhongzhi Shi
{"title":"A Comparative Study of PCA, LDA and Kernel LDA for Image Classification","authors":"Fei Ye, Zhiping Shi, Zhongzhi Shi","doi":"10.1109/ISUVR.2009.26","DOIUrl":null,"url":null,"abstract":"Although various discriminant analysis approaches have been used in Content-Based Image Retrieval (CBIR) application, there have been relatively few concerns with kernel-based methods. Furthermore, these CBIR applications still applied discriminant analysis to face images as face recognition did. In this paper we concerns images with general semantic concepts. We use our presented symmetrical invariant LBP (SILBP) texture descriptor to extract image visual features. We then explored effectiveness of Principal Component Analysis (PCA), Fisher linear discriminant analysis (LDA), and Kernel LDA algorithms in providing optimal discrimination features. Following it, we present an LDA based framework to carry out kernel discrimiant analysis in our application. By taking advantage of the efficiency in nonlinear condition of kernel-based methods and the simplicity of LDA, the proposed approach can improve the retrieval precision of CBIR. The experimental results validate the effectiveness of the proposed approach.","PeriodicalId":373083,"journal":{"name":"2009 International Symposium on Ubiquitous Virtual Reality","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Ubiquitous Virtual Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISUVR.2009.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Although various discriminant analysis approaches have been used in Content-Based Image Retrieval (CBIR) application, there have been relatively few concerns with kernel-based methods. Furthermore, these CBIR applications still applied discriminant analysis to face images as face recognition did. In this paper we concerns images with general semantic concepts. We use our presented symmetrical invariant LBP (SILBP) texture descriptor to extract image visual features. We then explored effectiveness of Principal Component Analysis (PCA), Fisher linear discriminant analysis (LDA), and Kernel LDA algorithms in providing optimal discrimination features. Following it, we present an LDA based framework to carry out kernel discrimiant analysis in our application. By taking advantage of the efficiency in nonlinear condition of kernel-based methods and the simplicity of LDA, the proposed approach can improve the retrieval precision of CBIR. The experimental results validate the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PCA、LDA和核LDA在图像分类中的比较研究
尽管在基于内容的图像检索(CBIR)应用中使用了多种判别分析方法,但基于核的方法相对较少受到关注。此外,这些CBIR应用程序仍然像人脸识别一样对人脸图像进行判别分析。本文主要研究具有一般语义概念的图像。利用对称不变LBP (SILBP)纹理描述符提取图像的视觉特征。然后,我们探讨了主成分分析(PCA)、Fisher线性判别分析(LDA)和核LDA算法在提供最佳判别特征方面的有效性。在此基础上,提出了一种基于LDA的核判别分析框架。该方法利用了基于核的方法在非线性条件下的有效性和LDA的简单性,提高了cir的检索精度。实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
About Two Physical Interaction Metaphors: Narrowing the Gap between the Real and the Virtual World Supporting User Interfaces in Ubiquitous Virtual Reality Research on VRI: Virtual World and Real World Interface A Collaborative Virtual Reality Environment for Molecular Biology CAMAR 2.0: Future Direction of Context-Aware Mobile Augmented Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1