Parameter Optimization on Spark for Particulate Matter Estimation

Zhenyu Yu, Zhibao Wang, L. Bai, Liangfu Chen, J. Tao
{"title":"Parameter Optimization on Spark for Particulate Matter Estimation","authors":"Zhenyu Yu, Zhibao Wang, L. Bai, Liangfu Chen, J. Tao","doi":"10.1145/3456389.3456406","DOIUrl":null,"url":null,"abstract":"With the rapid growth of remote sensing satellites, the volume of remote sensing data has been continuously increasing, which makes it necessary to utilize the big data platform for the rapid practical application of remote sensing inversion algorithms. This paper proposes an atmospheric remote sensing inversion processing method based on Spark. As a popular large-scale data processing framework, the memory-based iterable calculation model of Spark makes it suitable for the application of atmospheric remote sensing inversion. In this paper, we use the Spark computing framework to calculate the average value of the particulate matter in China over the past 10 years and the running time is much faster than the traditional single-node method. Furthermore, how Spark configuration parameters affect the performance of the task is explored. Different regression models in XGBoost are used to evaluate the performance of the parameters obtained by the parameter optimization algorithm in order to find the Spark optimal configuration parameters that meet the requirements.","PeriodicalId":124603,"journal":{"name":"2021 Workshop on Algorithm and Big Data","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Workshop on Algorithm and Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3456389.3456406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the rapid growth of remote sensing satellites, the volume of remote sensing data has been continuously increasing, which makes it necessary to utilize the big data platform for the rapid practical application of remote sensing inversion algorithms. This paper proposes an atmospheric remote sensing inversion processing method based on Spark. As a popular large-scale data processing framework, the memory-based iterable calculation model of Spark makes it suitable for the application of atmospheric remote sensing inversion. In this paper, we use the Spark computing framework to calculate the average value of the particulate matter in China over the past 10 years and the running time is much faster than the traditional single-node method. Furthermore, how Spark configuration parameters affect the performance of the task is explored. Different regression models in XGBoost are used to evaluate the performance of the parameters obtained by the parameter optimization algorithm in order to find the Spark optimal configuration parameters that meet the requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Spark的颗粒物估算参数优化
随着遥感卫星数量的快速增长,遥感数据量不断增加,这就要求利用大数据平台快速实现遥感反演算法的实际应用。提出了一种基于Spark的大气遥感反演处理方法。Spark作为一种流行的大规模数据处理框架,基于记忆的可迭代计算模型使其适合于大气遥感反演的应用。本文采用Spark计算框架计算中国近10年的颗粒物平均值,运行时间比传统的单节点方法快得多。此外,还探讨了Spark配置参数如何影响任务的性能。利用XGBoost中不同的回归模型对参数优化算法得到的参数性能进行评估,以找到满足要求的Spark最优配置参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Intelligent Infrared Inspection Device Based on Edge Computing An Experimental Study on the Core Autonomous System of Internet Application of MobileNet-v1 for Potato Plant Disease Detection Using Transfer Learning Opportunities and Challenges of Marketing in the Context of Big Data Cost-Efficient Scheduling of Workflow Applications with Deadline Constraint on IaaS Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1