Texture Analysis for Liver Segmentation and Classification: A Survey

Saima Rathore, M. A. Iftikhar, M. Hussain, A. Jalil
{"title":"Texture Analysis for Liver Segmentation and Classification: A Survey","authors":"Saima Rathore, M. A. Iftikhar, M. Hussain, A. Jalil","doi":"10.1109/FIT.2011.30","DOIUrl":null,"url":null,"abstract":"Texture is a combination of repeated patterns with regular/irregular frequency. It can only be visualized but hard to describe in words. Liver structure exhibit similar behavior, it has maximum disparity in intensity texture inside and along boundary which serves as a major problem in its segmentation and classification. Problem gets more complicated when one applies simple segmentation techniques without considering variation in intensity texture. The problem of representing liver texture is solved by encoding it in terms of certain parameters for texture analysis. Numerous textural analysis techniques have been devised for liver classification over the years some of which work equally work well for most of the imaging modalities. Here, we attempt to summarize the efficacy of textural analysis techniques devised for Computed Tomography (CT), Ultrasound and some other imaging modalities like Magnetic Resonance Imaging (MRI), in terms of well-known performance metrics.","PeriodicalId":101923,"journal":{"name":"2011 Frontiers of Information Technology","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2011.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Texture is a combination of repeated patterns with regular/irregular frequency. It can only be visualized but hard to describe in words. Liver structure exhibit similar behavior, it has maximum disparity in intensity texture inside and along boundary which serves as a major problem in its segmentation and classification. Problem gets more complicated when one applies simple segmentation techniques without considering variation in intensity texture. The problem of representing liver texture is solved by encoding it in terms of certain parameters for texture analysis. Numerous textural analysis techniques have been devised for liver classification over the years some of which work equally work well for most of the imaging modalities. Here, we attempt to summarize the efficacy of textural analysis techniques devised for Computed Tomography (CT), Ultrasound and some other imaging modalities like Magnetic Resonance Imaging (MRI), in terms of well-known performance metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纹理分析在肝脏分割与分类中的应用综述
纹理是具有规则/不规则频率的重复图案的组合。它只能被想象出来,但很难用语言来描述。肝脏结构表现出相似的行为,但其边界内和边界上的强度纹理差异最大,这是其分割和分类的主要问题。如果只使用简单的分割技术而不考虑灰度纹理的变化,问题会变得更加复杂。通过对肝脏纹理进行一定的参数编码,解决了肝脏纹理的表示问题。多年来,已经设计了许多用于肝脏分类的纹理分析技术,其中一些技术同样适用于大多数成像方式。在这里,我们试图总结为计算机断层扫描(CT)、超声和一些其他成像方式(如磁共振成像(MRI))设计的纹理分析技术在众所周知的性能指标方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantifying Non-functional Requirements in Service Oriented Development Secure Solution to Data Transfer from Sensor Node to Sink against Aggregator Compromises Development of an Optical Sensor for the Detection of Volatile Organic Compounds Network Performance Optimization: A Case Study of Enterprise Network Simulated in OPNET Fully Distributed Cooperative Spectrum Sensing for Cognitive Radio Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1