{"title":"Map relative localization based on road lane matching with Iterative Closest Point algorithm","authors":"A. Evlampev, I. Shapovalov, S. Gafurov","doi":"10.1145/3430199.3430229","DOIUrl":null,"url":null,"abstract":"Accurate and reliable localization is necessary for vehicle autonomous driving. Existing localization systems based on the GNSS cannot always provide lane-level accuracy. This paper proposes the method that improves vehicle localization by using road lanes recognized from a camera and a digital map. Iterative Closest Point (ICP) matching is performed for generated point clouds to minimize lateral error. The neural network is used for lane detection, detections are post-processed and fitted to the polynomial. Changes that allowed improving ICP matching are described. Finally, we perform an experiment with GPS RTK signal as ground truth and demonstrate that the proposed method has a position error of less than 0.5 m for vehicle localization.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Accurate and reliable localization is necessary for vehicle autonomous driving. Existing localization systems based on the GNSS cannot always provide lane-level accuracy. This paper proposes the method that improves vehicle localization by using road lanes recognized from a camera and a digital map. Iterative Closest Point (ICP) matching is performed for generated point clouds to minimize lateral error. The neural network is used for lane detection, detections are post-processed and fitted to the polynomial. Changes that allowed improving ICP matching are described. Finally, we perform an experiment with GPS RTK signal as ground truth and demonstrate that the proposed method has a position error of less than 0.5 m for vehicle localization.