Exaggerated Likelihoods

S. Santosh
{"title":"Exaggerated Likelihoods","authors":"S. Santosh","doi":"10.2139/ssrn.3520802","DOIUrl":null,"url":null,"abstract":"We present a portable model of distorted learning which embodies Tversky and Kahneman’s (1971) “belief in the law of small numbers.” When adjusting beliefs in response to new information the decision maker overweights the sample, updating as if the sample size were inflated. The degree of distortion is embodied in a single parameter specific to the agent and not to the particular stochastic setting. We show that the beliefs of such an agent preserve many dynamic properties of fully rational Bayesian beliefs. Though exaggerated likelihood delivers similar predictions to diagnostic expectations in a static setting, the models imply dramatically different belief dynamics. We present examples of distorted Kalman filtering in a Gaussian environment as well as a non-linear setting with stochastic volatility.","PeriodicalId":129448,"journal":{"name":"Cognitive Psychology eJournal","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Psychology eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3520802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a portable model of distorted learning which embodies Tversky and Kahneman’s (1971) “belief in the law of small numbers.” When adjusting beliefs in response to new information the decision maker overweights the sample, updating as if the sample size were inflated. The degree of distortion is embodied in a single parameter specific to the agent and not to the particular stochastic setting. We show that the beliefs of such an agent preserve many dynamic properties of fully rational Bayesian beliefs. Though exaggerated likelihood delivers similar predictions to diagnostic expectations in a static setting, the models imply dramatically different belief dynamics. We present examples of distorted Kalman filtering in a Gaussian environment as well as a non-linear setting with stochastic volatility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
夸张的可能
我们提出了一个可移植的扭曲学习模型,它体现了Tversky和Kahneman(1971)的“对小数定律的信念”。当决策者根据新信息调整信念时,他们会加重样本的权重,就好像样本的大小被夸大了一样。扭曲程度体现在单个参数中,特定于代理,而不是特定的随机设置。我们证明了这种智能体的信念保留了完全理性贝叶斯信念的许多动态特性。尽管在静态环境下,夸大的可能性与诊断期望提供了相似的预测,但这些模型暗示了截然不同的信念动态。我们给出了在高斯环境和随机波动的非线性环境下扭曲卡尔曼滤波的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Micro-level dynamics in hidden action situations with limited information Stress and Risk - Preferences versus Noise Pure Wage Rent: The Theory Abandoned Retirement Savings Regulatory Fit and Non-Fit: How They Work & What They Do
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1