{"title":"Flash X-ray diffraction system for fast, single-pulse temperature and phase transition measurements","authors":"D. Morgan, D. Macy, M. Madlener, J. Morgan","doi":"10.1109/PPPS.2007.4651823","DOIUrl":null,"url":null,"abstract":"A new, fast, single-pulse diagnostic for determining phase transitions and measuring the bulk temperature of polycrystalline metal objects has been developed. The diagnostic consists of a 37-stage Marx bank with a cable-coupled X-ray diode that produces a 35-ns pulse of mostly 0.71-Å monochromatic X rays and a P-43 fluor coupled to a cooled, charge-coupled device camera by a coherent fiber-optic bundle for detection of scattered X rays. The X-ray beam is collimated to a 1° divergence in the scattering plane with the combination of a 1.5-mm tungsten pinhole and a 1.5-mm-diameter molybdenum anode. X rays are produced by a high-energy electron beam transiting inward from the cathode to the anode in a needle-and-washer configuration. The anode’s characteristic K-α X-ray emission lines are utilized for this diffraction system. The X-ray anode is heavily shielded in all directions other than the collimated beam. The X-ray diode has a sealed reentrant system, allowing X rays to be produced inside a vacuum containment vessel, close to the sample under study.","PeriodicalId":275106,"journal":{"name":"2007 16th IEEE International Pulsed Power Conference","volume":"58 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 16th IEEE International Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPPS.2007.4651823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A new, fast, single-pulse diagnostic for determining phase transitions and measuring the bulk temperature of polycrystalline metal objects has been developed. The diagnostic consists of a 37-stage Marx bank with a cable-coupled X-ray diode that produces a 35-ns pulse of mostly 0.71-Å monochromatic X rays and a P-43 fluor coupled to a cooled, charge-coupled device camera by a coherent fiber-optic bundle for detection of scattered X rays. The X-ray beam is collimated to a 1° divergence in the scattering plane with the combination of a 1.5-mm tungsten pinhole and a 1.5-mm-diameter molybdenum anode. X rays are produced by a high-energy electron beam transiting inward from the cathode to the anode in a needle-and-washer configuration. The anode’s characteristic K-α X-ray emission lines are utilized for this diffraction system. The X-ray anode is heavily shielded in all directions other than the collimated beam. The X-ray diode has a sealed reentrant system, allowing X rays to be produced inside a vacuum containment vessel, close to the sample under study.