Identifying the origin of Iris images based on fusion of local image descriptors and PRNU based techniques

Christof Kauba, L. Debiasi, A. Uhl
{"title":"Identifying the origin of Iris images based on fusion of local image descriptors and PRNU based techniques","authors":"Christof Kauba, L. Debiasi, A. Uhl","doi":"10.1109/BTAS.2017.8272710","DOIUrl":null,"url":null,"abstract":"Being aware of the origin (source sensor) of an iris images offers several advantages. Identifying the specific sensor unit supports ensuring the integrity and authenticity of iris images and thus detecting insertion attacks at a biometric system. Moreover, by knowing the sensor model selective processing, such as image enhancements, becomes feasible. In order to determine the origin (i.e. dataset) of near-infrared (NIR) and visible spectrum iris/ocular images, we evaluate the performance of three different approaches, a photo response non-uniformity (PRNU) based and an image texture feature based one, and the fusion of both. Our first set of experiments includes 19 different datasets comprising different sensors and image resolutions. The second set includes 6 different camera models with 5 instances each. We evaluate the applicability of the three approaches in these test scenarios from a forensic and non-forensic perspective.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Being aware of the origin (source sensor) of an iris images offers several advantages. Identifying the specific sensor unit supports ensuring the integrity and authenticity of iris images and thus detecting insertion attacks at a biometric system. Moreover, by knowing the sensor model selective processing, such as image enhancements, becomes feasible. In order to determine the origin (i.e. dataset) of near-infrared (NIR) and visible spectrum iris/ocular images, we evaluate the performance of three different approaches, a photo response non-uniformity (PRNU) based and an image texture feature based one, and the fusion of both. Our first set of experiments includes 19 different datasets comprising different sensors and image resolutions. The second set includes 6 different camera models with 5 instances each. We evaluate the applicability of the three approaches in these test scenarios from a forensic and non-forensic perspective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部图像描述符和PRNU融合的虹膜图像起源识别
知道虹膜图像的来源(源传感器)有几个好处。识别特定的传感器单元支持确保虹膜图像的完整性和真实性,从而检测生物识别系统中的插入攻击。此外,通过了解传感器模型,图像增强等选择性处理变得可行。为了确定近红外(NIR)和可见光谱虹膜/眼部图像的来源(即数据集),我们评估了三种不同方法的性能,即基于光响应不均匀性(PRNU)的方法和基于图像纹理特征的方法,以及两者的融合。我们的第一组实验包括19个不同的数据集,包括不同的传感器和图像分辨率。第二组包括6个不同的相机型号,每个型号有5个实例。我们从法医和非法医的角度评估这三种方法在这些测试场景中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1