Real-Time Power Cycling in Video on Demand Data Centres Using Online Bayesian Prediction

Vicent Sanz Marco, Z. Wang, Barry Porter
{"title":"Real-Time Power Cycling in Video on Demand Data Centres Using Online Bayesian Prediction","authors":"Vicent Sanz Marco, Z. Wang, Barry Porter","doi":"10.1109/ICDCS.2017.167","DOIUrl":null,"url":null,"abstract":"Energy usage in data centres continues to be a major and growing concern as an increasing number of everyday services depend on these facilities. Research in this area has examined topics including power smoothing using batteries and deep learning to control cooling systems, in addition to optimisation techniques for the software running inside data centres. We present a novel real-time power-cycling architecture, supported by a media distribution approach and online prediction model, to automatically determine when servers are needed based on demand. We demonstrate with experimental evaluation that this approach can save up to 31% of server energy in a cluster. Our evaluation is conducted on typical rack mount servers in a data centre testbed and uses a recent real-world workload trace from the BBC iPlayer, an extremely popular video on demand service in the UK.","PeriodicalId":127689,"journal":{"name":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2017.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Energy usage in data centres continues to be a major and growing concern as an increasing number of everyday services depend on these facilities. Research in this area has examined topics including power smoothing using batteries and deep learning to control cooling systems, in addition to optimisation techniques for the software running inside data centres. We present a novel real-time power-cycling architecture, supported by a media distribution approach and online prediction model, to automatically determine when servers are needed based on demand. We demonstrate with experimental evaluation that this approach can save up to 31% of server energy in a cluster. Our evaluation is conducted on typical rack mount servers in a data centre testbed and uses a recent real-world workload trace from the BBC iPlayer, an extremely popular video on demand service in the UK.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于在线贝叶斯预测的视频点播数据中心实时电力循环
随着越来越多的日常服务依赖于数据中心设施,数据中心的能源使用仍然是一个主要且日益令人关注的问题。该领域的研究包括使用电池平滑电源、深度学习控制冷却系统,以及数据中心内部运行的软件优化技术。我们提出了一种新的实时功率循环架构,该架构由媒体分发方法和在线预测模型支持,可以根据需求自动确定何时需要服务器。我们通过实验评估证明,这种方法可以在集群中节省高达31%的服务器能源。我们的评估是在数据中心测试台上的典型机架式服务器上进行的,并使用了最近来自BBC iPlayer的真实工作负载跟踪,这是英国非常受欢迎的视频点播服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proximity Awareness Approach to Enhance Propagation Delay on the Bitcoin Peer-to-Peer Network ACTiCLOUD: Enabling the Next Generation of Cloud Applications The Internet of Things and Multiagent Systems: Decentralized Intelligence in Distributed Computing Decentralised Runtime Monitoring for Access Control Systems in Cloud Federations The Case for Using Content-Centric Networking for Distributing High-Energy Physics Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1