Machine Learning in Manufacturing: Processes Classification Using Support Vector Machine and Horse Optimization Algorithm

Dorin Moldovan, I. Anghel, T. Cioara, I. Salomie
{"title":"Machine Learning in Manufacturing: Processes Classification Using Support Vector Machine and Horse Optimization Algorithm","authors":"Dorin Moldovan, I. Anghel, T. Cioara, I. Salomie","doi":"10.1109/RoEduNet51892.2020.9324855","DOIUrl":null,"url":null,"abstract":"The classification of the manufacturing processes in processes that pass the in-line testing and processes that fail the in-line testing is a challenging research problem as the manufacturing processes data is characterized by many features that correspond to the different steps of the manufacturing processes. This research article proposes a method in which: (1) the manufacturing processes classification is performed using the Support Vector Machine (SVM) algorithm, (2) the regularization parameter value and the gamma coefficient value of the SVM algorithm are optimized using Horse Optimization Algorithm (HOA), (3) the HOA based SVM results are compared to Particle Swarm Optimization (PSO) based SVM results and Chicken Swarm Optimization (CSO) based SVM results, and (4) the data used in experiments is the open source public dataset SECOM.","PeriodicalId":140521,"journal":{"name":"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoEduNet51892.2020.9324855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The classification of the manufacturing processes in processes that pass the in-line testing and processes that fail the in-line testing is a challenging research problem as the manufacturing processes data is characterized by many features that correspond to the different steps of the manufacturing processes. This research article proposes a method in which: (1) the manufacturing processes classification is performed using the Support Vector Machine (SVM) algorithm, (2) the regularization parameter value and the gamma coefficient value of the SVM algorithm are optimized using Horse Optimization Algorithm (HOA), (3) the HOA based SVM results are compared to Particle Swarm Optimization (PSO) based SVM results and Chicken Swarm Optimization (CSO) based SVM results, and (4) the data used in experiments is the open source public dataset SECOM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制造业中的机器学习:基于支持向量机和马优化算法的过程分类
由于制造过程数据具有许多特征,这些特征对应于制造过程的不同步骤,因此对通过内联测试和未通过内联测试的制造过程进行分类是一个具有挑战性的研究问题。本研究提出一种方法,其中:(1)采用支持向量机(SVM)算法对制造过程进行分类,(2)采用马优化算法(HOA)对SVM算法的正则化参数值和伽马系数值进行优化,(3)将基于HOA的SVM结果与基于粒子群优化(PSO)的SVM结果和基于鸡群优化(CSO)的SVM结果进行比较,(4)实验使用的数据为开源公共数据集SECOM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Practical analysis of searchable encryption strategies for financial architecture Web Application Honeypot Published in the Wild Logger and Analyser for Modbus-based Industrial Networks Multi-Layer Security Framework for IoT Devices C++ Declarative API – Implementation Overview Within the XRootD Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1