Machine Learning in U.S. Bank Merger Prediction: A Text-Based Approach

Apostolos G. Katsafados, George N. Leledakis, Emmanouil G. Pyrgiotakis, I. Androutsopoulos, Emmanouel Fergadiotis
{"title":"Machine Learning in U.S. Bank Merger Prediction: A Text-Based Approach","authors":"Apostolos G. Katsafados, George N. Leledakis, Emmanouil G. Pyrgiotakis, I. Androutsopoulos, Emmanouel Fergadiotis","doi":"10.2139/ssrn.3848854","DOIUrl":null,"url":null,"abstract":"This paper investigates the role of textual information in a U.S. bank merger prediction task. Our intuition behind this approach is that text could reduce bank opacity and allow us to understand better the strategic options of banking firms. We retrieve textual information from bank annual reports using a sample of 9,207 U.S. bank-year observations during the period 1994-2016. To predict bidders and targets, we use textual information along with financial variables as inputs to several machine learning models. Our key findings suggest that: (1) when textual information is used as a single type of input, the predictive accuracy of our models is similar, or even better, compared to the models using only financial variables as inputs, and (2) when we jointly use textual information and financial variables as inputs, the predictive accuracy of our models is substantially improved compared to models using a single type of input. Therefore, our findings highlight the importance of textual information in a bank merger prediction task.","PeriodicalId":377322,"journal":{"name":"Investments eJournal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investments eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3848854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the role of textual information in a U.S. bank merger prediction task. Our intuition behind this approach is that text could reduce bank opacity and allow us to understand better the strategic options of banking firms. We retrieve textual information from bank annual reports using a sample of 9,207 U.S. bank-year observations during the period 1994-2016. To predict bidders and targets, we use textual information along with financial variables as inputs to several machine learning models. Our key findings suggest that: (1) when textual information is used as a single type of input, the predictive accuracy of our models is similar, or even better, compared to the models using only financial variables as inputs, and (2) when we jointly use textual information and financial variables as inputs, the predictive accuracy of our models is substantially improved compared to models using a single type of input. Therefore, our findings highlight the importance of textual information in a bank merger prediction task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国银行合并预测中的机器学习:基于文本的方法
本文研究了文本信息在美国银行并购预测任务中的作用。这种方法背后的直觉是,文本可以减少银行的不透明度,并使我们更好地理解银行公司的战略选择。我们使用1994-2016年期间9207个美国银行年度观察样本,从银行年度报告中检索文本信息。为了预测竞标者和目标,我们使用文本信息和金融变量作为几个机器学习模型的输入。我们的主要发现表明:(1)当文本信息作为单一类型的输入时,我们的模型的预测精度与仅使用金融变量作为输入的模型相似,甚至更好;(2)当我们联合使用文本信息和金融变量作为输入时,我们的模型的预测精度与使用单一类型输入的模型相比有很大的提高。因此,我们的研究结果强调了文本信息在银行合并预测任务中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numeraire-Invariant Quadratic Hedging and Mean-Variance Portfolio Allocation Benchmark Currency Stochastic Discount Factors Predictable Forward Performance Processes: Infrequent Evaluation and Robo-Advising Applications Shiller's CAPE and Forward Real Returns in India The Visual Shape Score: On its Predictability in the Lab, the Aggregated Stock Market, and the Cross-Section of Stock Returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1