Magnetic Braking during Direct Collapse Black Hole Formation

M. Latif, D. Schleicher
{"title":"Magnetic Braking during Direct Collapse Black Hole Formation","authors":"M. Latif, D. Schleicher","doi":"10.3847/2041-8213/ace34f","DOIUrl":null,"url":null,"abstract":"Magnetic fields are expected to be efficiently amplified during the formation of the first massive black holes via the small-scale dynamo and in the presence of strong accretion shocks occurring during gravitational collapse. Here, we analyze high-resolution cosmological magnetohydrodynamical simulations of gravitational collapse in atomic cooling halos, exploring the dynamical role of magnetic fields, particularly concerning the effect of magnetic braking and angular momentum transport. We find that after the initial amplification, magnetic fields contribute to the transport of angular momentum and reduce it compared to pure hydrodynamical simulations. However, the magnetic and Reynolds torques do not fully compensate for the inward advection of angular momentum, which still accumulates over timescales of ∼1 Myr. A Jeans analysis further shows that magnetic pressure strongly contributes to suppressing fragmentation on scales of 0.1–10 pc. Overall, the presence of magnetic fields thus aids in the transport of angular momentum and favors the formation of massive objects.","PeriodicalId":179976,"journal":{"name":"The Astrophysical Journal Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ace34f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic fields are expected to be efficiently amplified during the formation of the first massive black holes via the small-scale dynamo and in the presence of strong accretion shocks occurring during gravitational collapse. Here, we analyze high-resolution cosmological magnetohydrodynamical simulations of gravitational collapse in atomic cooling halos, exploring the dynamical role of magnetic fields, particularly concerning the effect of magnetic braking and angular momentum transport. We find that after the initial amplification, magnetic fields contribute to the transport of angular momentum and reduce it compared to pure hydrodynamical simulations. However, the magnetic and Reynolds torques do not fully compensate for the inward advection of angular momentum, which still accumulates over timescales of ∼1 Myr. A Jeans analysis further shows that magnetic pressure strongly contributes to suppressing fragmentation on scales of 0.1–10 pc. Overall, the presence of magnetic fields thus aids in the transport of angular momentum and favors the formation of massive objects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直接坍缩黑洞形成过程中的磁制动
在第一个大质量黑洞的形成过程中,通过小型发电机和在引力坍缩期间发生的强烈吸积冲击的存在,预计磁场将被有效地放大。在这里,我们分析了原子冷却晕中引力坍缩的高分辨率宇宙磁流体动力学模拟,探索了磁场的动力学作用,特别是关于磁制动和角动量输运的影响。我们发现,在初始放大后,磁场有助于角动量的输运,并且与纯流体动力学模拟相比减小了角动量的输运。然而,磁力矩和雷诺力矩并不能完全补偿角动量的向内平流,角动量仍然在1 Myr的时间尺度上积累。Jeans的分析进一步表明,磁压在0.1 - 10pc的尺度上对抑制破碎有很强的作用。总的来说,磁场的存在有助于角动量的传递,有利于大质量物体的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum: “Large Volcanic Event on Io Inferred from Jovian Sodium Nebula Brightening” (2019, ApJL, 871, L23) Voyager 1 Electron Densities in the Very Local Interstellar Medium to beyond 160 au Formation of Fan-spine Magnetic Topology through Flux Emergence and Subsequent Jet Production The First Robust Evidence Showing a Dark Matter Density Spike Around the Supermassive Black Hole in OJ 287 Evidence for a Redshifted Excess in the Intracluster Light Fractions of Merging Clusters at z ∼ 0.8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1