Fast and dynamic OLAP exploration using UDFs

Zhibo Chen, C. Ordonez, Carlos Garcia-Alvarado
{"title":"Fast and dynamic OLAP exploration using UDFs","authors":"Zhibo Chen, C. Ordonez, Carlos Garcia-Alvarado","doi":"10.1145/1559845.1559989","DOIUrl":null,"url":null,"abstract":"OLAP is a set of database exploratory techniques to efficiently retrieve multiple sets of aggregations from a large dataset. Generally, these techniques have either involved the use of an external OLAP server or required the dataset to be exported to a specialized OLAP tool for more efficient processing. In this work, we show that OLAP techniques can be performed within a modern DBMS without external servers or the exporting of datasets, using standard SQL queries and UDFs. The main challenge of such approach is that SQL and UDFs are not as flexible as the C language to explore the OLAP lattice and therefore it is more difficult to develop optimizations. We compare three different ways of performing OLAP exploration: plain SQL queries, a UDF implementing a lattice structure, and a UDF programming the star cube structure. We demonstrate how such methods can be used to efficiently explore typical OLAP datasets.","PeriodicalId":344093,"journal":{"name":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2009 ACM SIGMOD International Conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1559845.1559989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

OLAP is a set of database exploratory techniques to efficiently retrieve multiple sets of aggregations from a large dataset. Generally, these techniques have either involved the use of an external OLAP server or required the dataset to be exported to a specialized OLAP tool for more efficient processing. In this work, we show that OLAP techniques can be performed within a modern DBMS without external servers or the exporting of datasets, using standard SQL queries and UDFs. The main challenge of such approach is that SQL and UDFs are not as flexible as the C language to explore the OLAP lattice and therefore it is more difficult to develop optimizations. We compare three different ways of performing OLAP exploration: plain SQL queries, a UDF implementing a lattice structure, and a UDF programming the star cube structure. We demonstrate how such methods can be used to efficiently explore typical OLAP datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用udf进行快速动态的OLAP探索
OLAP是一组数据库探索技术,用于从大型数据集中有效地检索多组聚合。通常,这些技术要么涉及使用外部OLAP服务器,要么需要将数据集导出到专门的OLAP工具,以便进行更有效的处理。在这项工作中,我们展示了OLAP技术可以在现代DBMS中执行,而不需要外部服务器或导出数据集,使用标准的SQL查询和udf。这种方法的主要挑战是,SQL和udf在探索OLAP晶格方面不如C语言灵活,因此开发优化更困难。我们比较了执行OLAP探索的三种不同方式:普通SQL查询、实现点阵结构的UDF和对星形立方体结构进行编程的UDF。我们将演示如何使用这些方法来有效地探索典型的OLAP数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-tier, label-based security enforcement for web applications Estimating the confidence of conditional functional dependencies Session details: Research session 15: nearest neighbor search Session details: Research session 8: column stores Incremental maintenance of length normalized indexes for approximate string matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1