Driver Distraction Identification using Multiple Machine Learning Approaches

Nageshwar Nath Pandey, Naresh Babu Muppalaneni
{"title":"Driver Distraction Identification using Multiple Machine Learning Approaches","authors":"Nageshwar Nath Pandey, Naresh Babu Muppalaneni","doi":"10.1109/iccica52458.2021.9697193","DOIUrl":null,"url":null,"abstract":"According to the preceding year’s road statistical report emphasize that the prime reasons of mortal road accidents are because of drowsy or distracted state of driver. Recognition of such critical states of driver at its initial phase with higher accuracy can rescue several precious lives. To satisfy this demand, we have analyzed the five different classifier’s i.e. Fuzzy min-max, Decision tree, K- Nearest Neighbor’s, Linear Support Vector Machine and VGG-16 neural network. Among these classifier’s, VGG-16 has given outstanding result with accuracy of 96.4 % on validation data but lagged in the terms training time.","PeriodicalId":327193,"journal":{"name":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccica52458.2021.9697193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the preceding year’s road statistical report emphasize that the prime reasons of mortal road accidents are because of drowsy or distracted state of driver. Recognition of such critical states of driver at its initial phase with higher accuracy can rescue several precious lives. To satisfy this demand, we have analyzed the five different classifier’s i.e. Fuzzy min-max, Decision tree, K- Nearest Neighbor’s, Linear Support Vector Machine and VGG-16 neural network. Among these classifier’s, VGG-16 has given outstanding result with accuracy of 96.4 % on validation data but lagged in the terms training time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多种机器学习方法识别驾驶员分心
根据前一年的道路统计报告强调,致命交通事故的主要原因是驾驶员的昏昏欲睡或注意力不集中。对驾驶员在初始阶段的这些关键状态进行较高的识别,可以挽救许多宝贵的生命。为了满足这一需求,我们分析了五种不同的分类器,即模糊最小最大值,决策树,K近邻,线性支持向量机和VGG-16神经网络。在这些分类器中,VGG-16在验证数据上的准确率达到96.4%,表现突出,但在词汇训练时间上有所滞后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Body Sensors for Implementation of Human Activity Recognition Performance Prediction of Product/Person Using Real Time Twitter Tweets Survey on Centric Data Protection Method for Cloud Storage Application Twitter Sentiment Analysis using Natural Language Processing Crime Visualization using A Novel GIS-Based Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1