Categorization of Mergers and Acquisitions in Japan Using Corporate Databases: A Fundamental Research for Prediction

Bohua Shao, K. Asatani, I. Sakata
{"title":"Categorization of Mergers and Acquisitions in Japan Using Corporate Databases: A Fundamental Research for Prediction","authors":"Bohua Shao, K. Asatani, I. Sakata","doi":"10.1109/IEEM.2018.8607408","DOIUrl":null,"url":null,"abstract":"Mergers and Acquisitions (M&A) are recognized important strategy for corporate growth. In practice, M&A business consumes much energy and M&A success rate is not high. Hence, scientific M&A recommendation research is needed under such condition. This paper, focusing on M&A categorization, is a fundamental research for M&A prediction and recommendation. In this paper, we used M&A data, financial data and corporate data for M&A analysis. Based on them, we designed 13 features and used K-means clustering to separate M&A cases. The 13 features are of acquirer features, target features and their relationship features. We grouped M&A cases into 5 clusters and found different characteristics in these 5 clusters. Results in this paper show that these features will be effective for future M&A prediction and recommendation.","PeriodicalId":119238,"journal":{"name":"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2018.8607408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Mergers and Acquisitions (M&A) are recognized important strategy for corporate growth. In practice, M&A business consumes much energy and M&A success rate is not high. Hence, scientific M&A recommendation research is needed under such condition. This paper, focusing on M&A categorization, is a fundamental research for M&A prediction and recommendation. In this paper, we used M&A data, financial data and corporate data for M&A analysis. Based on them, we designed 13 features and used K-means clustering to separate M&A cases. The 13 features are of acquirer features, target features and their relationship features. We grouped M&A cases into 5 clusters and found different characteristics in these 5 clusters. Results in this paper show that these features will be effective for future M&A prediction and recommendation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于企业数据库的日本并购分类:基于预测的基础研究
并购是公认的企业发展的重要战略。在实践中,并购业务耗费大量精力,并购成功率不高。因此,在这种情况下,需要进行科学的并购推荐研究。本文的研究重点是并购分类,是对并购预测和推荐的基础性研究。本文采用并购数据、财务数据和企业数据进行并购分析。在此基础上,我们设计了13个特征,并使用K-means聚类对并购案例进行分离。这13个特征是收购者特征、目标特征和它们之间的关系特征。我们将并购案例分为5类,并发现了这5类案例的不同特征。本文的研究结果表明,这些特征对未来的并购预测和推荐是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Conceptual Interaction Cycle Between Individual and Group Absorptive Capacity with Social Integration Mechanism and Cohesive Learning Group as Moderating Variables Data-driven Defense Strategies for an Infrastructure Network against Multiple Interdictions Supplier Selection Model Development for Modular Product with Substitutability and Controllable Lead Time On a Discrete-time Epidemic Model based on a Continuous-time SEIR Model Under Feedback Vaccination Controls Biomass Supply Chain Design, Planning and Management: A Review of Literature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1