{"title":"uRON v1.5: A device-independent and reconfigurable robot navigation library","authors":"Sunglok Choi, Jae-Y. Lee, Wonpil Yu","doi":"10.1109/ARSO.2010.5679696","DOIUrl":null,"url":null,"abstract":"Many laboratories and companies are developing a mobile robot with various sensors and actuators. They implement navigation techniques usually tailored to their own robot. In this paper, we introduce a novel robot navigation library, Universal Robot Navigation (uRON). uRON is designed to be portable and independent from robot hardware and operating systems. Users can apply uRON to their robots with small amounts of codes. Moreover, uRON provides reusable navigation components and reconfigurable navigation framework. It contains the navigation components such as localization, path planning, path following, and obstacle avoidance. Users can create their own component using the existing ones. uRON also includes the navigation framework which assembles each component and wraps them as high-level functions. Users can achieve their robot service easily and quickly with this framework. We applied uRON to three service robots in Tomorrow City, Incheon, South Korea. Three robots had different hardwares and performed different services. uRON enables three robots movable and satisfies complex service requirements with less than 500 lines of codes.","PeriodicalId":164753,"journal":{"name":"2010 IEEE Workshop on Advanced Robotics and its Social Impacts","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Workshop on Advanced Robotics and its Social Impacts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO.2010.5679696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Many laboratories and companies are developing a mobile robot with various sensors and actuators. They implement navigation techniques usually tailored to their own robot. In this paper, we introduce a novel robot navigation library, Universal Robot Navigation (uRON). uRON is designed to be portable and independent from robot hardware and operating systems. Users can apply uRON to their robots with small amounts of codes. Moreover, uRON provides reusable navigation components and reconfigurable navigation framework. It contains the navigation components such as localization, path planning, path following, and obstacle avoidance. Users can create their own component using the existing ones. uRON also includes the navigation framework which assembles each component and wraps them as high-level functions. Users can achieve their robot service easily and quickly with this framework. We applied uRON to three service robots in Tomorrow City, Incheon, South Korea. Three robots had different hardwares and performed different services. uRON enables three robots movable and satisfies complex service requirements with less than 500 lines of codes.