{"title":"Towards adaptive perception in autonomous robots using second-order recurrent networks","authors":"T. Ziemke","doi":"10.1109/EURBOT.1996.551887","DOIUrl":null,"url":null,"abstract":"In this paper a higher-order recurrent connectionist architecture is used for learning adaptive behaviour in an autonomous robot. This architecture consists of two sub-networks in a master-slave relationship: a function network for the coupling between sensory inputs and motor outputs, and a context network, which dynamically adapts the sensory input weights in order to allow a flexible, context-dependent mapping from percepts to actions. The capabilities of this architecture are demonstrated in a number of action selection experiments with a simulated Khepera robot, and it is argued that the general approach of generically dividing the overall control task between sequentially cascaded context and function learning offers a powerful mechanism for autonomous long- and short-term adaptation of behaviour.","PeriodicalId":136786,"journal":{"name":"Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURBOT.1996.551887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
In this paper a higher-order recurrent connectionist architecture is used for learning adaptive behaviour in an autonomous robot. This architecture consists of two sub-networks in a master-slave relationship: a function network for the coupling between sensory inputs and motor outputs, and a context network, which dynamically adapts the sensory input weights in order to allow a flexible, context-dependent mapping from percepts to actions. The capabilities of this architecture are demonstrated in a number of action selection experiments with a simulated Khepera robot, and it is argued that the general approach of generically dividing the overall control task between sequentially cascaded context and function learning offers a powerful mechanism for autonomous long- and short-term adaptation of behaviour.