Convex and Differentiable Formulation for Inverse Problems in Hilbert Spaces with Nonlinear Clipping Effects

Natsuki Ueno, Shoichi Koyama, H. Saruwatari
{"title":"Convex and Differentiable Formulation for Inverse Problems in Hilbert Spaces with Nonlinear Clipping Effects","authors":"Natsuki Ueno, Shoichi Koyama, H. Saruwatari","doi":"10.1587/TRANSFUN.2021EAP1004","DOIUrl":null,"url":null,"abstract":"Wepropose a useful formulation for ill-posed inverse problems in Hilbert spaces with nonlinear clipping effects. Ill-posed inverse problems are often formulated as optimization problems, and nonlinear clipping effects may cause nonconvexity or nondifferentiability of the objective functions in the case of commonly used regularized least squares. To overcome these difficulties, we present a tractable formulation in which the objective function is convex and differentiable with respect to optimization variables, on the basis of the Bregman divergence associated with the primitive function of the clipping function. By using this formulation in combination with the representer theorem, we need only to deal with a finite-dimensional, convex, and differentiable optimization problem, which can be solved by well-established algorithms. We also show two practical examples of inverse problems where our theory can be applied, estimation of band-limited signals and time-harmonic acoustic fields, and evaluate the validity of our theory by numerical simulations. key words: inverse problem, Hilbert space, representer theorem, Bregman divergence, convex optimization","PeriodicalId":348826,"journal":{"name":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","volume":"463 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/TRANSFUN.2021EAP1004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wepropose a useful formulation for ill-posed inverse problems in Hilbert spaces with nonlinear clipping effects. Ill-posed inverse problems are often formulated as optimization problems, and nonlinear clipping effects may cause nonconvexity or nondifferentiability of the objective functions in the case of commonly used regularized least squares. To overcome these difficulties, we present a tractable formulation in which the objective function is convex and differentiable with respect to optimization variables, on the basis of the Bregman divergence associated with the primitive function of the clipping function. By using this formulation in combination with the representer theorem, we need only to deal with a finite-dimensional, convex, and differentiable optimization problem, which can be solved by well-established algorithms. We also show two practical examples of inverse problems where our theory can be applied, estimation of band-limited signals and time-harmonic acoustic fields, and evaluate the validity of our theory by numerical simulations. key words: inverse problem, Hilbert space, representer theorem, Bregman divergence, convex optimization
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有非线性剪切效应的Hilbert空间反问题的凸可微公式
我们提出了Hilbert空间中具有非线性剪切效应的不适定反问题的一个有用的公式。不适定逆问题通常被表述为优化问题,而在常用的正则化最小二乘情况下,非线性裁剪效应可能导致目标函数的非凸性或不可微性。为了克服这些困难,我们提出了一个易于处理的公式,其中目标函数是凸的,相对于优化变量是可微的,基于与裁剪函数的原始函数相关的Bregman散度。通过将这个公式与表征定理结合使用,我们只需要处理一个有限维的、凸的、可微的优化问题,这些问题可以通过完善的算法来解决。我们还展示了两个逆问题的实际例子,其中我们的理论可以应用,估计带限信号和时谐声场,并通过数值模拟评估我们的理论的有效性。关键词:逆问题,希尔伯特空间,表示定理,Bregman散度,凸优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum: Concatenated Permutation Codes under Chebyshev Distance [IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Vol. E106.A (2023), No. 3 pp.616-632] Automorphism Shuffles for Graphs and Hypergraphs and Its Applications Erratum: A Compact Digital Signature Scheme Based on the Module-LWR Problem [IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Vol. E104.A (2021), No. 9 pp.1219-1234] Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields Ramsey Numbers of Trails
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1