Interpretable models to predict Breast Cancer

Pedro Ferreira, I. Dutra, R. Salvini, E. Burnside
{"title":"Interpretable models to predict Breast Cancer","authors":"Pedro Ferreira, I. Dutra, R. Salvini, E. Burnside","doi":"10.1109/BIBM.2016.7822745","DOIUrl":null,"url":null,"abstract":"Several works in the literature use propositional (“black box”) approaches to generate prediction models. In this work we employ the Inductive Logic Programming technique, whose prediction model is based on first order rules, to the domain of breast cancer. These rules have the advantage of being interpretable and convenient to be used as a common language between the computer scientists and the medical experts. We also explore the relevance of some of variables usually collected to predict breast cancer. We compare our results with a propositional classifier that was considered best for the same dataset studied in this paper.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Several works in the literature use propositional (“black box”) approaches to generate prediction models. In this work we employ the Inductive Logic Programming technique, whose prediction model is based on first order rules, to the domain of breast cancer. These rules have the advantage of being interpretable and convenient to be used as a common language between the computer scientists and the medical experts. We also explore the relevance of some of variables usually collected to predict breast cancer. We compare our results with a propositional classifier that was considered best for the same dataset studied in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测乳腺癌的可解释模型
文献中的一些作品使用命题(“黑箱”)方法来生成预测模型。在这项工作中,我们采用归纳逻辑编程技术,其预测模型是基于一阶规则,到乳腺癌领域。这些规则具有可解释性强、易于作为计算机科学家和医学专家之间的共同语言使用的优点。我们还探讨了通常用于预测乳腺癌的一些变量的相关性。我们将我们的结果与命题分类器进行比较,该分类器被认为是本文研究的同一数据集的最佳分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1