Muhammad Yasin, Bodhisatwa Mazumdar, J. Rajendran, O. Sinanoglu
{"title":"SARLock: SAT attack resistant logic locking","authors":"Muhammad Yasin, Bodhisatwa Mazumdar, J. Rajendran, O. Sinanoglu","doi":"10.1109/HST.2016.7495588","DOIUrl":null,"url":null,"abstract":"Logic locking is an Intellectual Property (IP) protection technique that thwarts IP piracy, hardware Trojans, reverse engineering, and IC overproduction. Researchers have taken multiple attempts in breaking logic locking techniques and recovering its secret key. A Boolean Satisfiability (SAT) based attack has been recently presented that breaks all the existing combinational logic locking techniques. In this paper, we develop a lightweight countermeasure against this and other attacks that aim at gradually pruning the key search space. Our proposed logic locking technique, referred to as SARLock, maximizes the required number of distinguishing input patterns to recover the secret key. SARLock thwarts the SAT attack by rendering the attack effort exponential in the number of bits in the secret key, while its overhead grows only linearly.","PeriodicalId":194799,"journal":{"name":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"298","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2016.7495588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 298
Abstract
Logic locking is an Intellectual Property (IP) protection technique that thwarts IP piracy, hardware Trojans, reverse engineering, and IC overproduction. Researchers have taken multiple attempts in breaking logic locking techniques and recovering its secret key. A Boolean Satisfiability (SAT) based attack has been recently presented that breaks all the existing combinational logic locking techniques. In this paper, we develop a lightweight countermeasure against this and other attacks that aim at gradually pruning the key search space. Our proposed logic locking technique, referred to as SARLock, maximizes the required number of distinguishing input patterns to recover the secret key. SARLock thwarts the SAT attack by rendering the attack effort exponential in the number of bits in the secret key, while its overhead grows only linearly.