{"title":"Discrete Cosine Transform for MEG Signal Decoding","authors":"S. M. Kia, E. Olivetti, P. Avesani","doi":"10.1109/PRNI.2013.42","DOIUrl":null,"url":null,"abstract":"In this study, we propose the discrete cosine transform coefficients as a new and effective set of features for recognizing patterns of brain activity in MEG recording. We claim that computing DCT coefficients on the time-frequency representation of MEG signals is an efficient technique to reduce the dimensionality of feature space without losing discriminative power in brain decoding tasks. Our classification results on single-trial MEG decoding suggest that DCT is a viable method comparing to standard methods and it improves decoding accuracy by preserving the dynamic patterns of signal in time, frequency and space domains.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this study, we propose the discrete cosine transform coefficients as a new and effective set of features for recognizing patterns of brain activity in MEG recording. We claim that computing DCT coefficients on the time-frequency representation of MEG signals is an efficient technique to reduce the dimensionality of feature space without losing discriminative power in brain decoding tasks. Our classification results on single-trial MEG decoding suggest that DCT is a viable method comparing to standard methods and it improves decoding accuracy by preserving the dynamic patterns of signal in time, frequency and space domains.