Parallel Outlier Detection for Streamed Data Using Non-Parameterized Approach

H. D. Markad, S. Sangve
{"title":"Parallel Outlier Detection for Streamed Data Using Non-Parameterized Approach","authors":"H. D. Markad, S. Sangve","doi":"10.4018/IJSE.2017070102","DOIUrl":null,"url":null,"abstract":"Outlierdetectionisusedinvariousapplicationslikedetectionoffraud,networkanalysis,monitoring trafficovernetworks,manufacturingandenvironmentalsoftware.Thedatastreamswhicharegenerated arecontinuousandchangingovertime.Thisisthereasonwhyitbecomesnearlydifficulttodetect theoutliersintheexistingdatawhichishugeandcontinuousinnature.Thestreameddataisreal timeandchangesovertimeandhenceitisimpracticaltostoredatainthedataspaceandanalyze itforabnormalbehavior.Thelimitationsindataspacehasledtotheproblemofrealtimeanalysis ofdataandprocessingit inFCFSbasis.Theresultsregardingtheabnormalbehaviorhavetobe doneveryquicklyandinalimitedtimeframeandonaninfinitesetofdatastreamscomingoverthe networks.Toaddresstheproblemofdetectingoutliersonareal-timebasisisachallengingtaskand hencehastobemonitoredwiththehelpoftheprocessingpowerusedtodesignthegraphicsofany processingunit.Thealgorithmusedinthispaperusesakernelfunctiontoaccomplishthetask.It producestimelyoutcomeonhighspeedmulti-dimensionaldata.Thismethodincreasesthespeed ofoutlierdetectionby20timesandthespeedgoesonincreasingwiththeincreasewiththenumber ofdataattributesandinputdatarate. KEywORDS Anomaly Intrusion Detection, Compute Unified Device Architecture (CUDA), Gaussian Detection Scheme, Graphics Processing Unit (GPU), Outlier Detection, Parallel Execution","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSE.2017070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Outlierdetectionisusedinvariousapplicationslikedetectionoffraud,networkanalysis,monitoring trafficovernetworks,manufacturingandenvironmentalsoftware.Thedatastreamswhicharegenerated arecontinuousandchangingovertime.Thisisthereasonwhyitbecomesnearlydifficulttodetect theoutliersintheexistingdatawhichishugeandcontinuousinnature.Thestreameddataisreal timeandchangesovertimeandhenceitisimpracticaltostoredatainthedataspaceandanalyze itforabnormalbehavior.Thelimitationsindataspacehasledtotheproblemofrealtimeanalysis ofdataandprocessingit inFCFSbasis.Theresultsregardingtheabnormalbehaviorhavetobe doneveryquicklyandinalimitedtimeframeandonaninfinitesetofdatastreamscomingoverthe networks.Toaddresstheproblemofdetectingoutliersonareal-timebasisisachallengingtaskand hencehastobemonitoredwiththehelpoftheprocessingpowerusedtodesignthegraphicsofany processingunit.Thealgorithmusedinthispaperusesakernelfunctiontoaccomplishthetask.It producestimelyoutcomeonhighspeedmulti-dimensionaldata.Thismethodincreasesthespeed ofoutlierdetectionby20timesandthespeedgoesonincreasingwiththeincreasewiththenumber ofdataattributesandinputdatarate. KEywORDS Anomaly Intrusion Detection, Compute Unified Device Architecture (CUDA), Gaussian Detection Scheme, Graphics Processing Unit (GPU), Outlier Detection, Parallel Execution
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非参数化方法的流数据异常点并行检测
Outlierdetectionisusedinvariousapplicationslikedetectionoffraud,networkanalysis,monitoring trafficovernetworks,manufacturingandenvironmentalsoftware。Thedatastreamswhicharegenerated arecontinuousandchangingovertime。Thisisthereasonwhyitbecomesnearlydifficulttodetect theoutliersintheexistingdatawhichishugeandcontinuousinnature。Thestreameddataisreal timeandchangesovertimeandhenceitisimpracticaltostoredatainthedataspaceandanalyze itforabnormalbehavior。Thelimitationsindataspacehasledtotheproblemofrealtimeanalysis ofdataandprocessingit inFCFSbasis。Theresultsregardingtheabnormalbehaviorhavetobe doneveryquicklyandinalimitedtimeframeandonaninfinitesetofdatastreamscomingoverthe网络。Toaddresstheproblemofdetectingoutliersonareal-timebasisisachallengingtaskand hencehastobemonitoredwiththehelpoftheprocessingpowerusedtodesignthegraphicsofany processingunit.Thealgorithmusedinthispaperusesakernelfunctiontoaccomplishthetask。It producestimelyoutcomeonhighspeedmulti-dimensionaldata。Thismethodincreasesthespeed ofoutlierdetectionby20timesandthespeedgoesonincreasingwiththeincreasewiththenumber ofdataattributesandinputdatarate。关键词异常入侵检测,计算统一设备架构(CUDA),高斯检测方案,图形处理单元(GPU),离群点检测,并行执行
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Study of Different Classification Techniques for Sentiment Analysis Segmentation of Leukemia Cells Using Clustering: A Comparative Study Analyzing Tagore's Emotion With the Passage of Time in Song-Offerings: A Philosophical Study Based on Computational Intelligence Sarcasm Detection for Workplace Stress Management 2D Shape Recognition and Retrieval Using Shape Contour Based on the 8-Neighborhood Patterns Matching Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1