Fiheon Imroze, C. Mithun, Karunakaran Logesh, P. Venkatakrishnan, S. Dutta
{"title":"Effect of recessed electrodes on contact resistance in Organic Thin Film Transistor based on polymer dielectric","authors":"Fiheon Imroze, C. Mithun, Karunakaran Logesh, P. Venkatakrishnan, S. Dutta","doi":"10.1109/DRC50226.2020.9135178","DOIUrl":null,"url":null,"abstract":"Even though there has been a significant progress in organic thin film transistor (OTFT), one of the major limitations that hinders the device performance is contact effect at the junction of semiconductor and source-drain contacts The effect becomes more effective while scaling down the channel length resulting in apparent mobility reduction, hysteresis etc. [1] . Efforts have been made to reduce contact resistance through the reduction of the metal-semiconductor injection barrier by either metal work function modification or by introducing a carrier injecting buffer layer. In this work, recessed drain-source structure on solution-processed polymer gate dielectric is demonstrated to realize bottom gate bottom contact (BGBC) OTFT based on poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- b]thiophene](PBTTT-C14) as semiconductor.","PeriodicalId":397182,"journal":{"name":"2020 Device Research Conference (DRC)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC50226.2020.9135178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Even though there has been a significant progress in organic thin film transistor (OTFT), one of the major limitations that hinders the device performance is contact effect at the junction of semiconductor and source-drain contacts The effect becomes more effective while scaling down the channel length resulting in apparent mobility reduction, hysteresis etc. [1] . Efforts have been made to reduce contact resistance through the reduction of the metal-semiconductor injection barrier by either metal work function modification or by introducing a carrier injecting buffer layer. In this work, recessed drain-source structure on solution-processed polymer gate dielectric is demonstrated to realize bottom gate bottom contact (BGBC) OTFT based on poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- b]thiophene](PBTTT-C14) as semiconductor.