Knowledge discovery in biological data sets using a hybrid Bayes classifier/evolutionary algorithm

M. Raymer, L. Kuhn, W. Punch
{"title":"Knowledge discovery in biological data sets using a hybrid Bayes classifier/evolutionary algorithm","authors":"M. Raymer, L. Kuhn, W. Punch","doi":"10.1109/BIBE.2001.974435","DOIUrl":null,"url":null,"abstract":"A key element of bioinformatics research is the extraction of meaningful information from large experimental data sets. Various approaches, including statistical and graph theoretical methods, data mining, and computational pattern recognition, have been applied to this task with varying degrees of success. We have previously shown that a genetic algorithm coupled with a k-nearest-neighbors classifier performs well in extracting information about protein-water binding from X-ray crystallographic protein structure data. Using a novel classifier based on the Bayes discriminant function, we present a hybrid algorithm that employs feature selection and extraction to isolate salient features from large biological data sets. The effectiveness of this algorithm is demonstrated on various biological and medical data sets.","PeriodicalId":405124,"journal":{"name":"Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE 2001)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE 2001)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2001.974435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A key element of bioinformatics research is the extraction of meaningful information from large experimental data sets. Various approaches, including statistical and graph theoretical methods, data mining, and computational pattern recognition, have been applied to this task with varying degrees of success. We have previously shown that a genetic algorithm coupled with a k-nearest-neighbors classifier performs well in extracting information about protein-water binding from X-ray crystallographic protein structure data. Using a novel classifier based on the Bayes discriminant function, we present a hybrid algorithm that employs feature selection and extraction to isolate salient features from large biological data sets. The effectiveness of this algorithm is demonstrated on various biological and medical data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合贝叶斯分类器/进化算法的生物数据集知识发现
生物信息学研究的一个关键要素是从大型实验数据集中提取有意义的信息。各种方法,包括统计和图理论方法、数据挖掘和计算模式识别,已经应用于这项任务,并取得了不同程度的成功。我们之前已经证明,结合k近邻分类器的遗传算法在从x射线晶体学蛋白质结构数据中提取蛋白质-水结合信息方面表现良好。利用一种基于贝叶斯判别函数的分类器,我们提出了一种混合算法,该算法采用特征选择和提取来从大型生物数据集中分离显著特征。在各种生物和医学数据集上证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing algorithms for large-scale sequence analysis Mining genome variation to associate disease with transcription factor binding site alteration Searching online journals for fluorescence microscope images depicting protein subcellular location patterns Profile combinatorics for fragment selection in comparative protein structure modeling Development of a robotic device for MRI-guided interventions in the breast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1