{"title":"Multi-modal learning for gesture recognition","authors":"Congqi Cao, Yifan Zhang, Hanqing Lu","doi":"10.1109/ICME.2015.7177460","DOIUrl":null,"url":null,"abstract":"With the development of sensing equipments, data from different modalities is available for gesture recognition. In this paper, we propose a novel multi-modal learning framework. A coupled hidden Markov model (CHMM) is employed to discover the correlation and complementary information across different modalities. In this framework, we use two configurations: one is multi-modal learning and multi-modal testing, where all the modalities used during learning are still available during testing; the other is multi-modal learning and single-modal testing, where only one modality is available during testing. Experiments on two real-world gesture recognition data sets have demonstrated the effectiveness of our multi-modal learning framework. Improvements on both of the multi-modal and single-modal testing have been observed.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
With the development of sensing equipments, data from different modalities is available for gesture recognition. In this paper, we propose a novel multi-modal learning framework. A coupled hidden Markov model (CHMM) is employed to discover the correlation and complementary information across different modalities. In this framework, we use two configurations: one is multi-modal learning and multi-modal testing, where all the modalities used during learning are still available during testing; the other is multi-modal learning and single-modal testing, where only one modality is available during testing. Experiments on two real-world gesture recognition data sets have demonstrated the effectiveness of our multi-modal learning framework. Improvements on both of the multi-modal and single-modal testing have been observed.