{"title":"Prototyping N-body simulation in Proteus","authors":"P. Mills, L. Nyland, J. Prins, J. Reif","doi":"10.1109/IPPS.1992.222981","DOIUrl":null,"url":null,"abstract":"This paper explores the use of Proteus, an architecture-independent language suitable for prototyping parallel and distributed programs. Proteus is a high-level imperative notation based on sets and sequences with a single construct for the parallel composition of processes communicating through shared memory. Several different parallel algorithms for N-body simulation are presented in Proteus, illustrating how Proteus provides a common foundation for expressing the various parallel programming models. This common foundation allows prototype parallel programs to be tested and evolved without the use of machine-specific languages. To transform prototypes to implementations on specific architectures, program refinement techniques are utilized. Refinement strategies are illustrated that target broad-spectrum parallel intermediate languages, and their viability is demonstrated by refining an N-body algorithm to data-parallel CVL code.<<ETX>>","PeriodicalId":340070,"journal":{"name":"Proceedings Sixth International Parallel Processing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1992.222981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper explores the use of Proteus, an architecture-independent language suitable for prototyping parallel and distributed programs. Proteus is a high-level imperative notation based on sets and sequences with a single construct for the parallel composition of processes communicating through shared memory. Several different parallel algorithms for N-body simulation are presented in Proteus, illustrating how Proteus provides a common foundation for expressing the various parallel programming models. This common foundation allows prototype parallel programs to be tested and evolved without the use of machine-specific languages. To transform prototypes to implementations on specific architectures, program refinement techniques are utilized. Refinement strategies are illustrated that target broad-spectrum parallel intermediate languages, and their viability is demonstrated by refining an N-body algorithm to data-parallel CVL code.<>