GPU-based parallel householder bidiagonalization

Fangbing Liu, F. Seinstra
{"title":"GPU-based parallel householder bidiagonalization","authors":"Fangbing Liu, F. Seinstra","doi":"10.1145/1851476.1851512","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the GPU-based implementation and optimization of Householder bidiagonalization, a matrix factorization method which is an integral part of full Singular Value Decomposition (SVD) - an important algorithm for many problems in the research domain of Multimedia Content Analysis (MMCA). On cluster computers, complex adaptive run-time techniques often must be implemented to overcome the growing negative performance impact of load imbalances and to ensure reasonable speedup. We show that the nature of the many-core platform can avoid the necessity of applying such complex run-time parallelization techniques in software while achieving a performance of 64 gigaflops/s on a single-GPU GTX 295 in double precision, 82% of the theoretical peak performance.","PeriodicalId":330072,"journal":{"name":"IEEE International Symposium on High-Performance Parallel Distributed Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Parallel Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1851476.1851512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we discuss the GPU-based implementation and optimization of Householder bidiagonalization, a matrix factorization method which is an integral part of full Singular Value Decomposition (SVD) - an important algorithm for many problems in the research domain of Multimedia Content Analysis (MMCA). On cluster computers, complex adaptive run-time techniques often must be implemented to overcome the growing negative performance impact of load imbalances and to ensure reasonable speedup. We show that the nature of the many-core platform can avoid the necessity of applying such complex run-time parallelization techniques in software while achieving a performance of 64 gigaflops/s on a single-GPU GTX 295 in double precision, 82% of the theoretical peak performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpu的并行户主双对角化
本文讨论了基于gpu的Householder双对角化的实现和优化。Householder双对角化是全奇异值分解(SVD)的一个组成部分,是多媒体内容分析(MMCA)研究领域中许多问题的重要算法。在集群计算机上,通常必须实现复杂的自适应运行时技术,以克服负载不平衡对性能日益增长的负面影响,并确保合理的加速。我们表明,多核平台的性质可以避免在软件中应用这种复杂的运行时并行化技术的必要性,同时在单gpu GTX 295上实现64千兆次/秒的双精度性能,达到理论峰值性能的82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data filtering for scalable high-dimensional k-NN search on multicore systems Communication-driven scheduling for virtual clusters in cloud When paxos meets erasure code: reduce network and storage cost in state machine replication Domino: an incremental computing framework in cloud with eventual synchronization TOP-PIM: throughput-oriented programmable processing in memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1