An Off-Road Terrain Dataset Including Images Labeled With Measures Of Terrain Roughness

Gabriela Gresenz, Jules White, D. Schmidt
{"title":"An Off-Road Terrain Dataset Including Images Labeled With Measures Of Terrain Roughness","authors":"Gabriela Gresenz, Jules White, D. Schmidt","doi":"10.1109/ICAS49788.2021.9551147","DOIUrl":null,"url":null,"abstract":"This paper describes the structure and functionality of a dataset designed to enable autonomous vehicles to learn about off-road terrain using a single monocular image. This dataset includes over 12,000 images of off-road terrain and the corresponding sensor data from a global positioning system (GPS), inertial measurement units (IMUs), and a wheel rotation speed sensor. The paper also describes and empirically evaluates eight roughness labeling schemas derived from IMU z-axis acceleration for labeling the images in our dataset. These roughness labels can be used for training deep learning models to detect terrain roughness.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"33 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes the structure and functionality of a dataset designed to enable autonomous vehicles to learn about off-road terrain using a single monocular image. This dataset includes over 12,000 images of off-road terrain and the corresponding sensor data from a global positioning system (GPS), inertial measurement units (IMUs), and a wheel rotation speed sensor. The paper also describes and empirically evaluates eight roughness labeling schemas derived from IMU z-axis acceleration for labeling the images in our dataset. These roughness labels can be used for training deep learning models to detect terrain roughness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个包含地形粗糙度标记图像的越野地形数据集
本文描述了一个数据集的结构和功能,该数据集旨在使自动驾驶汽车能够使用单眼图像学习越野地形。该数据集包括超过12,000张越野地形图像,以及来自全球定位系统(GPS)、惯性测量单元(imu)和车轮转速传感器的相应传感器数据。本文还描述并经验评估了8种基于IMU z轴加速度的粗糙度标记模式,用于标记我们数据集中的图像。这些粗糙度标签可以用于训练深度学习模型来检测地形粗糙度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Automated Search for Underwater Threats Using Multistatic Sensor Fields by Incorporating Unconfirmed Track Information Matching Models for Crowd-Shipping Considering Shipper’s Acceptance Uncertainty Observational Learning: Imitation Through an Adaptive Probabilistic Approach Simultaneous Calibration of Positions, Orientations, and Time Offsets, Among Multiple Microphone Arrays Modified crop health monitoring and pesticide spraying system using NDVI and Semantic Segmentation: An AGROCOPTER based approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1